Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left\{ {{{\mathop{\rm a}\nolimits} _1},{{\mathop{\rm a}\nolimits} _2},{{\mathop{\rm a}\nolimits} _3}} \right\}\) and \(D = \left\{ {{{\mathop{\rm d}\nolimits} _1},{{\mathop{\rm d}\nolimits} _2},{{\mathop{\rm d}\nolimits} _3}} \right\}\) be bases for \(V\), and let \(P = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm d}\nolimits} _1}} \right]}_A}}&{{{\left[ {{{\mathop{\rm d}\nolimits} _2}} \right]}_A}}&{{{\left[ {{{\mathop{\rm d}\nolimits} _3}} \right]}_A}}\end{array}} \right]\). Which of the following equations is satisfied by \(P\) for all x in \(V\)?

  1. \({\left[ {\mathop{\rm x}\nolimits} \right]_A} = P{\left[ {\mathop{\rm x}\nolimits} \right]_D}\)
  2. \({\left[ {\mathop{\rm x}\nolimits} \right]_D} = P{\left[ {\mathop{\rm x}\nolimits} \right]_A}\)

Short Answer

Expert verified

Equation (i) is satisfied by \(P\) for all \({\mathop{\rm x}\nolimits} \) in \(V\).

Step by step solution

01

State the change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\)and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be bases of a vector space \(V\). Then according toTheorem 15,there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \mathop P\limits_{C \leftarrow B} {\left[ {\mathop{\rm x}\nolimits} \right]_B}\).

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]}_C}}&{{{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]}_C}}& \cdots &{{{\left[ {{{\mathop{\rm b}\nolimits} _n}} \right]}_C}}\end{array}} \right]\).

02

Determine which equation is satisfied by \(P\)

Let \(P = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm d}\nolimits} _1}} \right]}_A}}&{{{\left[ {{{\mathop{\rm d}\nolimits} _2}} \right]}_A}}&{{{\left[ {{{\mathop{\rm d}\nolimits} _3}} \right]}_A}}\end{array}} \right]\).

Since the columns of \(P\) are \(A - \)coordinate vectors, a vector of the form \(P{\mathop{\rm x}\nolimits} \) must be a \(A - \)coordinate vector. Thus, \(P\) satisfies equation (i).

Thus, equation (i) is satisfied by \(P\) for all \({\mathop{\rm x}\nolimits} \) in \(V\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that the coordinate mapping is onto \({\mathbb{R}^n}\). That is, given any y in \({\mathbb{R}^n}\), with entries \({y_{\bf{1}}}\),….,\({y_n}\), produce u in V such that \({\left( {\bf{u}} \right)_B} = y\).

Consider the polynomials , and \({p_{\bf{3}}}\left( t \right) = {\bf{2}}\) \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + t,{p_{\bf{2}}}\left( t \right) = {\bf{1}} - t\)(for all t). By inspection, write a linear dependence relation among \({p_{\bf{1}}},{p_{\bf{2}}},\) and \({p_{\bf{3}}}\). Then find a basis for Span\(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}},{p_{\bf{3}}}} \right\}\).

If A is a \({\bf{4}} \times {\bf{3}}\) matrix, what is the largest possible dimension of the row space of A? If Ais a \({\bf{3}} \times {\bf{4}}\) matrix, what is the largest possible dimension of the row space of A? Explain.

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{2}}}\)on the line\(y = {\bf{5}}x\).

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free