Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise 4, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

4. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{0}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\\{\bf{2}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{7}}}\\{\bf{3}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{8}}\\{ - {\bf{7}}}\end{array}} \right)\)

Short Answer

Expert verified

Vector \(x = \left( {\begin{array}{*{20}{c}}0\\1\\{ - 5}\end{array}} \right)\)

Step by step solution

01

Use the definition

The coordinates of x relative to basis\({\rm B} = \left\{ {{b_{\bf{1}}},{b_{\bf{2}}},...,{b_n}} \right\}\)are the weights\({c_{\bf{1}}},{c_{\bf{2}}},...,{c_n}\),such that\(x = {c_{\bf{1}}}{b_{\bf{1}}} + {c_{\bf{2}}}{b_{\bf{2}}} + ... + {c_n}{b_n}\). Then,\({\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\ \vdots \\{{c_n}}\end{array}} \right)\).

02

Find x

By the above definition, you get

\(\begin{array}{c}x = - 4\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\end{array}} \right) + 8\left( {\begin{array}{*{20}{c}}3\\{ - 5}\\2\end{array}} \right) + \left( { - 7} \right)\left( {\begin{array}{*{20}{c}}4\\{ - 7}\\3\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4\\{ - 8}\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{24}\\{ - 40}\\{16}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - 28}\\{49}\\{ - 21}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{4 + 24 - 28}\\{ - 8 - 40 + 49}\\{0 + 16 - 21}\end{array}} \right)\\x = \left( {\begin{array}{*{20}{c}}0\\1\\{ - 5}\end{array}} \right).\end{array}\)

03

Draw a conclusion

Hence, vector \(x = \left( {\begin{array}{*{20}{c}}0\\1\\{ - 5}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the subspaces \({\rm{Row }}A\) , \({\rm{Col }}A\), \({\rm{Nul }}A\), \({\rm{Row}}\,{A^T}\) , \({\rm{Col}}\,{A^T}\) , and \({\rm{Nul}}\,{A^T}\) are in \({\mathbb{R}^m}\) and which are in \({\mathbb{R}^n}\) ? How many distinct subspaces are in this list?.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free