Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-4, assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

\[A = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}&{\bf{7}}&{\bf{9}}&{ - {\bf{9}}}\\{\bf{1}}&{\bf{2}}&{ - {\bf{4}}}&{{\bf{10}}}&{{\bf{13}}}&{ - {\bf{12}}}\\{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{1}}}&{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}\\{\bf{1}}&{ - {\bf{3}}}&{\bf{1}}&{ - {\bf{5}}}&{ - {\bf{7}}}&{\bf{3}}\\{\bf{1}}&{ - {\bf{2}}}&{\bf{0}}&{\bf{0}}&{ - {\bf{5}}}&{ - {\bf{4}}}\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}&{\bf{7}}&{\bf{9}}&{ - {\bf{9}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{1}}}&{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right]\]

Short Answer

Expert verified

Rank A=3, dim Nul A=3, \({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\1\\1\\1\\1\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\\{ - 3}\\{ - 2}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}7\\{10}\\1\\{ - 5}\\0\end{array}} \right]} \right\}\), \[{\rm{basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}0&1&{ - 1}&3&4&{ - 3}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}0&0&0&1&{ - 1}&{ - 2}\end{array}} \right]} \right\}\], \[\left\{ {\left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]} \right\}\]

Step by step solution

01

Find the rank of A

In the row equivalent matrix B, there are three non-zero rows. Therefore, the rank of A is 3.

02

Find dim Nul A

Using the rank theorem, you get:

\(\begin{array}{c}{\rm{rank}}\,A + \dim \,{\rm{Nul}}A = n\\3 + \dim \;{\rm{Nul}}\,A = 6\\\dim \;{\rm{Nul}}\,A = 6 - 3\\ = 3\end{array}\)

03

Find the basis of Col A

From matrix B:

\(B = \left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\)

The basis of Col A can be written as:

\({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\1\\1\\1\\1\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\\{ - 3}\\{ - 2}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}7\\{10}\\1\\{ - 5}\\0\end{array}} \right]} \right\}\)

04

Find the basis of row A

The basis of the row space of A can be written as:

\[{\rm{Basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}0&1&{ - 1}&3&4&{ - 3}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}0&0&0&1&{ - 1}&{ - 2}\end{array}} \right]} \right\}\]

05

Find the basis of row A

Write the augmented matrix for the system \(B{\bf{x}} = 0\).

\(M = \left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}&0\\0&1&{ - 1}&3&4&{ - 3}&0\\0&0&0&1&{ - 1}&{ - 2}&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\end{array}} \right]\)

Write the system of equations.

\(\begin{array}{c}{x_1} - 2{x_3} + 9{x_5} + 2{x_6} = 0\\{x_2} - {x_3} + 7{x_5} + 3{x_6} = 0\\{x_4} - {x_5} - 2{x_6} = 0\end{array}\)

Consider \({x_3}\), \({x_5}\), and \({x_6}\) as free variables.

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{2{x_3} - 9{x_5} - 2{x_6}}\\{{x_3} - 7{x_5} - 3{x_6}}\\{{x_3}}\\{{x_5} + 2{x_6}}\\{{x_5}}\\{{x_6}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right]{x_3} + \left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right]{x_5} + \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]{x_6}\end{array}\]

So, the null space of A is \[\left\{ {\left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]} \right\}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

In Exercise 2, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

2. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{5}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{7}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{5}}}\end{array}} \right)\)

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

In Exercise 1, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

1. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{6}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{array}} \right)\)

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free