Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] Let \[B = \left\{ {{\bf{1}},{\bf{cos}}t,{\bf{co}}{{\bf{s}}^{\bf{2}}}t,....,{\bf{co}}{{\bf{s}}^{\bf{6}}}t} \right\}\] and \(C = \left\{ {{\bf{1}},{\bf{cos}}t, {\bf{cos2}}t,......{\bf{cos6}}t} \right\}\). Assume the following trigonometric identities (see Exercises 37 in section 4.1).

\[{\bf{cos2}}t = - {\bf{1}} + {\bf{2co}}{{\bf{s}}^{\bf{2}}}t\]

\[{\bf{cos3}}t = - {\bf{3cos}}t + {\bf{4co}}{{\bf{s}}^{\bf{3}}}t\]

\[{\bf{cos4}}t = {\bf{1}} - {\bf{8co}}{{\bf{s}}^{\bf{2}}}t + {\bf{8co}}{{\bf{s}}^{\bf{4}}}t\]

\[{\bf{cos5}}t = {\bf{5cos}}t - {\bf{20co}}{{\bf{s}}^{\bf{3}}}t + {\bf{16co}}{{\bf{s}}^{\bf{5}}}t\]

\[{\bf{cos6}}t = - {\bf{1}} + {\bf{18co}}{{\bf{s}}^{\bf{2}}}t - {\bf{48co}}{{\bf{s}}^{\bf{4}}}t + {\bf{32co}}{{\bf{s}}^{\bf{6}}}t\]

Let H be the subspace of functions spanned by the functions in B. Then B is a basis for H, by Exercises 38 in section 4.3.

a. Write the B-coordinte vectors of the vectors in C, and use them to show that C is a linearly independent set in H.

b. Explain why C is a basis for H.

Short Answer

Expert verified

a. \[\left[ {\begin{array}{*{20}{c}}{{b_0}}&{{b_1}}&{{b_2}}&{{b_3}}& \ldots &{{b_6}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&0&1&0&{ - 1}\\0&1&0&{ - 3}&0&5&0\\0&0&2&0&{ - 8}&0&{18}\\0&0&0&4&0&{ - 20}&0\\0&0&0&0&8&0&{ - 48}\\0&0&0&0&0&{16}&0\\0&0&0&0&0&0&{32}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\{\cos t}\\{{{\cos }^2}t}\\{{{\cos }^3}t}\\{{{\cos }^4}t}\\{{{\cos }^5}t}\\{{{\cos }^6}t}\end{array}} \right] = 0\]

b. The vectors in C are linearly independent. Therefore, C is the basis of H.

Step by step solution

01

Write the B coordinate of each vector in C

Let

\({\left[ 1 \right]_B} = \left[ {\begin{array}{*{20}{c}}1\\0\\0\\0\\0\\0\\0\end{array}} \right]\)

Then,

\({\left[ 1 \right]_B} = \left[ {1\,\,\cos t\,\,{{\cos }^2}t\,\,{{\cos }^3}t\,\,.....\,\,{{\cos }^6}t} \right]\)

And

\(\begin{array}{l}{\left[ {\cos t} \right]_B} = \left[ {\begin{array}{*{20}{c}}0\\1\\0\\0\\0\\0\\0\end{array}} \right]\\\cos t = {\left[ {\cos t} \right]_s}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\;\;{{\cos }^3}t\;\;....\;\;{{\cos }^6}t} \right]\end{array}\)

02

Write the vectors for the given trigonometric identities

For \(\cos 2t = - 1 + 2{\cos ^2}t\):

\(\cos 2t = {\left[ {\cos 2t} \right]_B}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\,\,{{\cos }^3}t\,....\,\,{{\cos }^6}t} \right]\)

For \(\cos 3t = - 3\cos t + 4{\cos ^3}t\):

\(\cos 3t = {\left[ {\cos 3t} \right]_B}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\,\,{{\cos }^3}t\,....\,\,{{\cos }^6}t} \right]\)

For \(\cos 4t = 1 - 8{\cos ^2}t + 8{\cos ^4}t\):

\(\cos 4t = {\left[ {\cos 4t} \right]_B}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\,\,{{\cos }^3}t\,....\,\,{{\cos }^6}t} \right]\)

For \(\cos 5t = 5\cos t - 20{\cos ^3}t + 16{\cos ^5}t\):

\(\cos 5t = {\left[ {\cos 5t} \right]_B}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\,\,{{\cos }^3}t\,....\,\,{{\cos }^6}t} \right]\)

For \(\cos 6t = - 1 + 18{\cos ^2}t - 48{\cos ^4}t + 32{\cos ^6}t\):

\(\cos 6t = {\left[ {\cos 6t} \right]_B}\left[ {1\;\;\cos t\;\;{{\cos }^2}t\,\,{{\cos }^3}t\,....\,\,{{\cos }^6}t} \right]\)

03

Write the vectors of trigonometric identity in the matrix form

C is a linearly independent set in H if

\({b_0}\left( 1 \right) + {b_1}\cos t + {b_2}\cos 2t + .... + {b_6}\cos 6t = 0\)

The matrix form of the equation is:

\[\left[ {\begin{array}{*{20}{c}}{{b_0}}&{{b_1}}&{{b_2}}&{{b_3}}& \ldots &{{b_6}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&0&1&0&{ - 1}\\0&1&0&{ - 3}&0&5&0\\0&0&2&0&{ - 8}&0&{18}\\0&0&0&4&0&{ - 20}&0\\0&0&0&0&8&0&{ - 48}\\0&0&0&0&0&{16}&0\\0&0&0&0&0&0&{32}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\{\cos t}\\{{{\cos }^2}t}\\{{{\cos }^3}t}\\{{{\cos }^4}t}\\{{{\cos }^5}t}\\{{{\cos }^6}t}\end{array}} \right] = 0\]

04

Check why Col A\( = {\mathbb{R}^n}\)

Let

\[A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&0&1&0&{ - 1}\\0&1&0&{ - 3}&0&5&0\\0&0&2&0&{ - 8}&0&{18}\\0&0&0&4&0&{ - 20}&0\\0&0&0&0&8&0&{ - 48}\\0&0&0&0&0&{16}&0\\0&0&0&0&0&0&{32}\end{array}} \right]\]

Enter matrix A.

\(\begin{array}{l} > > A = \left[ \begin{array}{l}1\,\,0\,\, - 1\,\,0\,\,1\,\,0\,\, - 1\,;\,\,0\,\,1\,\,0\,\, - 3\,\,0\,\,0\,\,5\,\,0\,;\,\,0\,\,0\,\,2\,\,0\,\, - 8\,\,0\,\,18;\,\,0\,\,0\,\,0\,\,4\,\,\,0\,\,\, - 20\,\,\,0;\,\,0\,\,0\,\,0\,\,0\,\,8\,\,0\,\, - 48;\,\,\\0\,\,0\,\,0\,\,0\,\,0\,\,16\,\,0;\,\,0\,\,0\,\,0\,\,0\,\,0\,\,0\,\,32\end{array} \right];\\ > > U = {\rm{null}}\left( A \right)\end{array}\)

The null matrix is a zero matrix. Therefore, set C is linearly independent in subspace H, and the dimension of subspace H is 7.

So, set C is the basis of space H.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

In Exercise 2, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

2. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{5}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{7}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{5}}}\end{array}} \right)\)

(M) Show that \(\left\{ {t,sin\,t,cos\,{\bf{2}}t,sin\,t\,cos\,t} \right\}\) is a linearly independent set of functions defined on \(\mathbb{R}\). Start by assuming that

\({c_{\bf{1}}} \cdot t + {c_{\bf{2}}} \cdot sin\,t + {c_{\bf{3}}} \cdot cos\,{\bf{2}}t + {c_{\bf{4}}} \cdot sin\,t\,cos\,t = {\bf{0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\bf{5}} \right)\)

Equation (5) must hold for all real t, so choose several specific values of t (say, \(t = {\bf{0}},\,.{\bf{1}},\,.{\bf{2}}\)) until you get a system of enough equations to determine that the \({c_j}\) must be zero.

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

\({\bf{1}} - {\bf{2}}{t^{\bf{2}}} - {t^{\bf{3}}}\), \(t + {\bf{2}}{t^{\bf{3}}}\), \({\bf{1}} + t - {\bf{2}}{t^{\bf{2}}}\)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free