Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] According to Theorem 11, a linearly independent set \(\left\{ {{{\bf{v}}_1},....{{\bf{v}}_k}} \right\}\) in \({\mathbb{R}^n}\) can be expanded to a basis for \({\mathbb{R}^n}\). One way to this is to create \(A = \left[ {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}& \cdots &{{{\bf{v}}_k}\,\;\,\begin{array}{*{20}{c}}{{{\bf{e}}_1}}& \cdots &{{{\bf{e}}_n}}\end{array}}\end{array}} \right]\), with \({{\bf{e}}_1}\),….,\({{\bf{e}}_n}\) the columns of identity matrix; the pivot columns of A form a basis for \({\mathbb{R}^n}\).

a. Use the method described to extend the following vectors to a basis for \({\mathbb{R}^5}\).

\({{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{ - {\bf{7}}}\\{\bf{8}}\\{ - {\bf{5}}}\\{\bf{7}}\end{array}} \right]\), \({{\bf{v}}_2} = \left[ {\begin{array}{*{20}{c}}{\bf{9}}\\{\bf{4}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{7}}}\end{array}} \right]\), \({{\bf{v}}_3} = \left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{7}}\\{ - {\bf{8}}}\\{\bf{5}}\\{ - {\bf{7}}}\end{array}} \right]\)

b. Explain why the method works in general: Why are the original vectors \({{\bf{v}}_1}\),….,\({{\bf{v}}_k}\) included in the basis found for Col A? Why is \({\bf{Col}}\,A = {\mathbb{R}^n}\)?

Short Answer

Expert verified

a. \(\left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\;\;{{\bf{v}}_3},\;\;{{\bf{e}}_2},\;{{\bf{e}}_3}} \right\}\)

b. \({\rm{Col}}\left( A \right) = {\mathbb{R}^n}\)

Step by step solution

01

Form the matrix using vectors

The matrix using vectors can be written as:

\(A = \left[ {\begin{array}{*{20}{c}}{ - 9}&9&6\\{ - 7}&4&7\\8&1&{ - 8}\\{ - 5}&6&5\\7&{ - 7}&{ - 7}\end{array}} \right]\)

02

Find the matrix \(\left[ {\begin{array}{*{20}{c}}A&{{I_{\bf{5}}}}\end{array}} \right]\)

The matrix \(\left[ {\begin{array}{*{20}{c}}A&{{I_5}}\end{array}} \right]\) can be expressed as:

\(\left[ {\begin{array}{*{20}{c}}A&{{I_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 9}&9&6\\{ - 7}&4&7\\8&1&{ - 8}\\{ - 5}&6&5\\7&{ - 7}&{ - 7}\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\end{array}} \right]\)

03

Find the row reduced echelon form of \(\left[ {\begin{array}{*{20}{c}}A&{{I_{\bf{5}}}}\end{array}} \right]\)

Let

\(B = \left[ {\begin{array}{*{20}{c}}{ - 9}&9&6\\{ - 7}&4&7\\8&1&{ - 8}\\{ - 5}&6&5\\7&{ - 7}&{ - 7}\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\end{array}} \right]\).

Use the following MATLAB code to find the row reduce echelon form:

\(\begin{array}{l} > > B = \left[ { - 9\,\,9\,\,6\,\,1\,\,0\,\,0\,\,0\,\,0;\,\, - 7\,\,4\,\,7\,\,0\,\,1\,\,0\,\,0\,\,0\,;\,\,8\,\,1\,\, - 8\,\,0\,\,0\,\,1\,\,0\,\,0;\,\, - 5\,\,6\,\,5\,\,0\,\,0\,\,0\,\,1\,\,0;\,\,7\,\, - 7\,\, - 7\,\,0\,\,0\,\,0\,\,0\,\,1} \right];\\ > > U = {\rm{rref}}\left( A \right)\end{array}\)\(\left[ {\begin{array}{*{20}{c}}{ - 9}&9&6\\{ - 7}&4&7\\8&1&{ - 8}\\{ - 5}&6&5\\7&{ - 7}&{ - 7}\end{array}\,\,\,\,\,\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\\0&0&0\\0&0&0\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}{ - \frac{1}{3}}&0&0&1&{\frac{3}{7}}\\0&0&0&1&{\frac{5}{7}}\\{ - \frac{1}{3}}&0&0&0&{ - \frac{3}{7}}\\0&1&0&3&{\frac{{22}}{7}}\\0&0&1&0&{ - \frac{{53}}{7}}\end{array}} \right]\)

As the pivot columns are 1, 2, 3, 5, and 6, the extended basis is:

\(\left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\;\;{{\bf{v}}_3},\;\;{{\bf{e}}_2},\;{{\bf{e}}_3}} \right\}\)

04

Check why Col A\( = {\mathbb{R}^n}\)

If the set \(\left\{ {{{\bf{v}}_1},\;{{\bf{v}}_2},\;....,\;{{\bf{v}}_k}} \right\}\) is linearly independent, there is a pivot element in each column. Therefore,

\({\rm{Col}}\left( A \right) = {\mathbb{R}^n}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let V be a vector space that contains a linearly independent set \(\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}},{u_{\bf{4}}}} \right\}\). Describe how to construct a set of vectors \(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\) in V such that \(\left\{ {{v_{\bf{1}}},{v_{\bf{3}}}} \right\}\) is a basis for Span\(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\).

In Exercise 2, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

2. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{5}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{7}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{5}}}\end{array}} \right)\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

17. A submatrix of a matrix A is any matrix that results from deleting some (or no) rows and/or columns of A. It can be shown that A has rank \(r\) if and only if A contains an invertible \(r \times r\) submatrix and no longer square submatrix is invertible. Demonstrate part of this statement by explaining (a) why an \(m \times n\) matrix A of rank \(r\) has an \(m \times r\) submatrix \({A_1}\) of rank \(r\), and (b) why \({A_1}\) has an invertible \(r \times r\) submatrix \({A_2}\).

The concept of rank plays an important role in the design of engineering control systems, such as the space shuttle system mentioned in this chapter’s introductory example. A state-space model of a control system includes a difference equation of the form

\({{\mathop{\rm x}\nolimits} _{k + 1}} = A{{\mathop{\rm x}\nolimits} _k} + B{{\mathop{\rm u}\nolimits} _k}\)for \(k = 0,1,....\) (1)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(\left\{ {{{\mathop{\rm x}\nolimits} _k}} \right\}\) is a sequence of “state vectors” in \({\mathbb{R}^n}\) that describe the state of the system at discrete times, and \(\left\{ {{{\mathop{\rm u}\nolimits} _k}} \right\}\) is a control, or input, sequence. The pair \(\left( {A,B} \right)\) is said to be controllable if

\({\mathop{\rm rank}\nolimits} \left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}& \cdots &{{A^{n - 1}}B}\end{array}} \right) = n\) (2)

The matrix that appears in (2) is called the controllability matrix for the system. If \(\left( {A,B} \right)\) is controllable, then the system can be controlled, or driven from the state 0 to any specified state \({\mathop{\rm v}\nolimits} \) (in \({\mathbb{R}^n}\)) in at most \(n\) steps, simply by choosing an appropriate control sequence in \({\mathbb{R}^m}\). This fact is illustrated in Exercise 18 for \(n = 4\) and \(m = 2\). For a further discussion of controllability, see this text’s website (Case study for Chapter 4).

(M) Show that \(\left\{ {t,sin\,t,cos\,{\bf{2}}t,sin\,t\,cos\,t} \right\}\) is a linearly independent set of functions defined on \(\mathbb{R}\). Start by assuming that

\({c_{\bf{1}}} \cdot t + {c_{\bf{2}}} \cdot sin\,t + {c_{\bf{3}}} \cdot cos\,{\bf{2}}t + {c_{\bf{4}}} \cdot sin\,t\,cos\,t = {\bf{0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\bf{5}} \right)\)

Equation (5) must hold for all real t, so choose several specific values of t (say, \(t = {\bf{0}},\,.{\bf{1}},\,.{\bf{2}}\)) until you get a system of enough equations to determine that the \({c_j}\) must be zero.

Question 11: Let\(S\)be a finite minimal spanning set of a vector space\(V\). That is,\(S\)has the property that if a vector is removed from\(S\), then the new set will no longer span\(V\). Prove that\(S\)must be a basis for\(V\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free