Chapter 4: Q4.5-27Q (page 191)
Explain why the space \[{\mathop{\rm P}\nolimits} \] of all polynomials is infinite-dimensional.
Short Answer
The space \[{\mathop{\rm P}\nolimits} \] of all polynomials is infinite-dimensional.
Chapter 4: Q4.5-27Q (page 191)
Explain why the space \[{\mathop{\rm P}\nolimits} \] of all polynomials is infinite-dimensional.
The space \[{\mathop{\rm P}\nolimits} \] of all polynomials is infinite-dimensional.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).
Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a “system” of homogeneous equations.)
(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)
Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]
Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).
Given vectors, \({u_{\bf{1}}}\),….,\({u_p}\) and w in V, show that w is a linear combination of \({u_{\bf{1}}}\),….,\({u_p}\) if and only if \({\left( w \right)_B}\) is a linear combination of vectors \({\left( {{{\bf{u}}_{\bf{1}}}} \right)_B}\),….,\({\left( {{{\bf{u}}_p}} \right)_B}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.