Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({{\bf{u}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{4}}\\{ - {\bf{6}}}\end{array}} \right]\), \({{\bf{u}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{{b_{\bf{1}}}}\\{{b_{\bf{2}}}}\\{{b_{\bf{3}}}}\end{array}} \right]\), and \(W = {\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},\,{{\bf{u}}_{\bf{2}}}} \right\}\). Find an implicit description of W, that is, find a set of one or more homogenous equations that characterize the points of W.

Short Answer

Expert verified

W is the set of points that satisfy \({b_1} + 2{b_2} + {b_3} = 0\).

Step by step solution

01

 Step 1:Write the system of equation

Consider the equation \({x_1}{{\bf{u}}_1} + {x_2}{{\bf{u}}_2} = {\bf{b}}\).

Then, the system of equation can be given in the following manner:

\({x_1}\left[ {\begin{array}{*{20}{c}}{ - 2}\\4\\{ - 6}\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 5}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\\{{b_3}}\end{array}} \right]\)

The augmented matrix form is shown below:

\(\left[ {\begin{array}{*{20}{c}}{ - 2}&1&{{b_1}}\\4&2&{{b_2}}\\{ - 6}&{ - 5}&{{b_3}}\end{array}} \right]\)

02

Write the row reduce form for augmented matrix

Apply row operations to the aforementioned augmented matrixin the following manner:

\(\begin{aligned}{}A &= \left[ {\begin{aligned}{{}}{ - 2}&1&{{b_1}}\\4&2&{{b_2}}\\{ - 6}&{ - 5}&{{b_3}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}}{ - 2}&1&{{b_1}}\\0&4&{{b_2} + 2{b_1}}\\0&{ - 8}&{{b_3} - 3{b_1}}\end{aligned}} \right]\,\,\,\,\,\,\,\left\{ {{R_2} \to {R_2} + 2{R_1},\,\,{R_3} \to {R_3} - 3{R_1}} \right\}\\ &= \left[ {\begin{aligned}{{}}{ - 2}&1&{{b_1}}\\0&4&{{b_2} + 2{b_1}}\\0&0&{{b_1} + 2{b_3} + {b_3}}\end{aligned}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to {R_3} + 2{R_2}} \right\}\end{aligned}\)

If the system has a consistent solution, then all elements of the last row of A must be equal to zero.

\({b_1} + 2{b_2} + {b_3} = 0\)

Thus, W is the set of points that satisfy \({b_1} + 2{b_2} + {b_3} = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

Let \(A\) be any \(2 \times 3\) matrix such that \({\mathop{\rm rank}\nolimits} A = 1\), let u be the first column of \(A\), and suppose \({\mathop{\rm u}\nolimits} \ne 0\). Explain why there is a vector v in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\). How could this construction be modified if the first column of \(A\) were zero?

In Exercise 7, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

7. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{\bf{9}}\end{array}} \right),{b_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{2}}}\\{\bf{4}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{9}}}\\{\bf{6}}\end{array}} \right)\)

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

Let be a linear transformation from a vector space \(V\) \(T:V \to W\)in to vector space \(W\). Prove that the range of T is a subspace of . (Hint: Typical elements of the range have the form \(T\left( {\mathop{\rm x}\nolimits} \right)\) and \(T\left( {\mathop{\rm w}\nolimits} \right)\) for some \({\mathop{\rm x}\nolimits} ,\,{\mathop{\rm w}\nolimits} \)in \(V\).)\(W\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free