Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(u = \left\{ {{{\mathop{\rm u}\nolimits} _1},{{\mathop{\rm u}\nolimits} _2}} \right\}\) and \(W = \left\{ {{{\mathop{\rm w}\nolimits} _1},{{\mathop{\rm w}\nolimits} _2}} \right\}\) be bases for \(V\), and let \(P\) be a matrix whose columns are \({\left[ {{{\mathop{\rm u}\nolimits} _1}} \right]_w}\) and \({\left[ {{{\mathop{\rm u}\nolimits} _2}} \right]_w}\). Which of the following equations is satisfied by \(P\) for all x in \(V\)?

  1. \({\left[ {\mathop{\rm x}\nolimits} \right]_u} = P{\left[ {\mathop{\rm x}\nolimits} \right]_w}\)
  2. \({\left[ {\mathop{\rm x}\nolimits} \right]_w} = P{\left[ {\mathop{\rm x}\nolimits} \right]_u}\)

Short Answer

Expert verified

Equation (ii) is satisfied by \(P\) for all \({\mathop{\rm x}\nolimits} \) in \(V\).

Step by step solution

01

Change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be the bases of a vector space \(V\). Then according to Theorem 15, there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \mathop P\limits_{C \leftarrow B} {\left[ {\mathop{\rm x}\nolimits} \right]_B}\).

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]}_C}}&{{{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]}_C}}& \cdots &{{{\left[ {{{\mathop{\rm b}\nolimits} _n}} \right]}_C}}\end{array}} \right]\).

02

Determine which equation is satisfied by \(P\)

Let \(P\) be the matrix whose columns are \({\left[ {{{\mathop{\rm u}\nolimits} _1}} \right]_w}\) and \({\left[ {{{\mathop{\rm u}\nolimits} _2}} \right]_w}\).

Since the columns of \(P\) are \(w - \)coordinate vectors, a vector of the form \(P{\mathop{\rm x}\nolimits} \) must be a \(w - \)coordinate vector. Thus \(P\) satisfies equation (ii).

Thus, equation (ii) is satisfied by \(P\) for all \({\mathop{\rm x}\nolimits} \) in \(V\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side of constants? Is it possible for such a system to have a unique solution for every right-hand side? Explain.

Define a linear transformation by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 0 \right)}\end{array}} \right)\). Find \(T:{{\mathop{\rm P}\nolimits} _2} \to {\mathbb{R}^2}\)polynomials \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _2}\) in \({{\mathop{\rm P}\nolimits} _2}\) that span the kernel of T, and describe the range of T.

What would you have to know about the solution set of a homogenous system of 18 linear equations 20 variables in order to understand that every associated nonhomogenous equation has a solution? Discuss.

In Exercise 1, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

1. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{6}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{array}} \right)\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix\(A\)is\(m \times n\).

15. Let\(A\)be an\(m \times n\)matrix, and let\(B\)be a\(n \times p\)matrix such that\(AB = 0\). Show that\({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces\({\mathop{\rm Nul}\nolimits} A\),\({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and\({\mathop{\rm Col}\nolimits} B\)is contained in one of the other three subspaces.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free