Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Show thatis a linearly independent set of functions defined on. Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

Short Answer

Expert verified

By the invertible matrix theorem, is a linearly independent set of functions defined on .

Step by step solution

01

Use the method used in Exercise 37

Assume \({c_1} \cdot 1 + {c_2} \cdot \cos t + {c_3} \cdot {\cos ^2}t + ... + {c_7} \cdot {\cos ^6}t = 0\).

For \(t = 0,.1,.2,...,.6\), the above equation gives the system as shown below:

\(\left( {\begin{array}{*{20}{c}}1&{\cos 0}&{{{\cos }^2}0}&{{{\cos }^3}0}&{{{\cos }^4}0}&{{{\cos }^5}0}&{{{\cos }^6}0}\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\\{{c_4}}\\{{c_5}}\\{{c_6}}\\{{c_7}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\\0\\0\\0\end{array}} \right)\)

That is, \(Ac = 0\).

02

Find the determinant of A

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&{\cos 0}&{{{\cos }^2}0}&{{{\cos }^3}0}&{{{\cos }^4}0}&{{{\cos }^5}0}&{{{\cos }^6}0}\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right|\\\det A \ne 0\end{array}\)

03

Draw a conclusion

By the invertible matrix theorem, has only a trivial solution. Thus, is a linearly independent set of functions defined on .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

If a \({\bf{3}} \times {\bf{8}}\) matrix A has a rank 3, find dim Nul A, dim Row A, and rank \({A^T}\).

Let \(V\) and \(W\) be vector spaces, and let \(T:V \to W\) be a linear transformation. Given a subspace \(U\) of \(V\), let \(T\left( U \right)\) denote the set of all images of the form \(T\left( {\mathop{\rm x}\nolimits} \right)\), where x is in \(U\). Show that \(T\left( U \right)\) is a subspace of \(W\).

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Suppose the solutions of a homogeneous system of five linear equations in six unknowns are all multiples of one nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free