Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\1\\{ - 1}\\{ - 3}\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1\\{ - 5}&{ - 1}&0&{ - 2}\\9&{ - 11}&7&{ - 3}\\{19}&{ - 9}&7&1\end{array}} \right)\)

Short Answer

Expert verified

\({\mathop{\rm w}\nolimits} \)is inCol A, and w is not in Nul A.

Step by step solution

01

Write an augmented matrix

Consider the augmented matrix \(\left( {\begin{array}{*{20}{c}}A&{\mathop{\rm w}\nolimits} \end{array}} \right)\) shown below:

\(\left( {\begin{array}{*{20}{c}}A&w\end{array}} \right) = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1&1\\{ - 5}&{ - 1}&0&{ - 2}&1\\9&{ - 11}&7&{ - 3}&{ - 1}\\{19}&{ - 9}&7&1&{ - 3}\end{array}} \right)\)

02

Convert the matrix into row-reduced echelon form

Consider the matrix \(A = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1&1\\{ - 5}&{ - 1}&0&{ - 2}&1\\9&{ - 11}&7&{ - 3}&{ - 1}\\{19}&{ - 9}&7&1&{ - 3}\end{array}} \right)\).

Use the following code in MATLAB to obtain the row-reduced echelon form.

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left( {7\,\,\,6\,\,\, - 4\,\,\,1\,\,\,1;\,\, - 5\,\,\, - 1\,\,\,0\,\,\, - 2\,\,\,1;\,\,9\,\,\, - 11\,\,\,7\,\,\, - 3\,\,\, - 1;\,19\,\,\, - 9\,\,\,7\,\,\,1\,\,\, - 3} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1&1\\{ - 5}&{ - 1}&0&{ - 2}&1\\9&{ - 11}&7&{ - 3}&{ - 1}\\{19}&{ - 9}&7&1&{ - 3}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{\frac{{ - 1}}{{95}}}&{\frac{1}{{95}}}\\0&1&0&{\frac{{39}}{{19}}}&{\frac{{ - 20}}{{19}}}\\0&0&1&{\frac{{267}}{{95}}}&{\frac{{ - 172}}{{95}}}\\0&0&0&0&0\end{array}} \right)\)

03

Determine whether w is in the column space of A

A typical vector v in Col A has the property that the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm v}\nolimits} \) is consistent.

The system of equations of matrix A is consistent.

Thus, \({\mathop{\rm w}\nolimits} \) is inCol A.

04

Determine whether w is in the null space of A

A typical vector v in Nul A has the property that \(A{\mathop{\rm v}\nolimits} = 0\).

Use the code in MATLAB to compute the matrix \({\mathop{\rm Aw}\nolimits} \) as shown below:

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left( {7\,\,\,6\,\,\, - 4\,\,\,1;\,\, - 5\,\,\, - 1\,\,\,0\,\,\, - 2;\,\,9\,\,\, - 11\,\,\,7\,\,\, - 3;\,19\,\,\, - 9\,\,\,7\,\,\,1} \right)\\ > > {\mathop{\rm w}\nolimits} = \left( {1;\,\,1;\,\, - 1;\,\, - 3} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm A}\nolimits} * w\end{array}\)

\(\begin{array}{c}{\mathop{\rm A}\nolimits} {\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1\\{ - 5}&{ - 1}&0&{ - 2}\\9&{ - 11}&7&{ - 3}\\{19}&{ - 9}&7&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}1\\1\\{ - 1}\\{ - 3}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{14}\\0\\0\\0\end{array}} \right)\end{array}\)

Thus, w is not in Nul A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Verify that rank \({{\mathop{\rm uv}\nolimits} ^T} \le 1\) if \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 3}\\5\end{array}} \right]\) and \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}a\\b\\c\end{array}} \right]\).

Consider the polynomials \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}},{p_{\bf{2}}}\left( t \right) = {\bf{1}} - {t^{\bf{2}}}\). Is \(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}}} \right\}\) a linearly independent set in \({{\bf{P}}_{\bf{3}}}\)? Why or why not?

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free