Chapter 4: Q36E (page 191)
Show that Bis a\(H = Span\left\{ {{v_1},{v_2},{v_3}} \right\}\)basis for H and x is in H, and find the B-coordinate vector of x, for
\({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 6}\\4\\{ - 9}\\4\end{array}} \right)\),\({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{3}}}\\{\bf{7}}\\{ - {\bf{3}}}\end{array}} \right)\),\({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{\bf{5}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right)\),\({\bf{x}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{7}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right)\)
Short Answer
It shows thatB is a basis for H, and x is in H.
TheB-coordinate vector is \({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}3\\5\\2\end{array}} \right)\).