Chapter 4: Q35E (page 191)
(M) Let \(H = {\bf{Span}}\left\{ {{{\bf{v}}_{\bf{1}}},\;{{\bf{v}}_{\bf{2}}}} \right\}\) and \(B = \left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\). Show that x is in the H and find the B coordinate vector of x, for
\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{11}}}\\{ - {\bf{5}}}\\{{\bf{10}}}\\{\bf{7}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{14}}}\\{ - {\bf{8}}}\\{{\bf{13}}}\\{{\bf{10}}}\end{array}} \right)\), \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{\bf{19}}}\\{ - {\bf{13}}}\\{{\bf{18}}}\\{{\bf{15}}}\end{array}} \right)\)
Short Answer
\({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - \frac{5}{3}}\\{\frac{8}{3}}\end{array}} \right)\)