Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Let \(H = {\bf{Span}}\left\{ {{{\bf{v}}_{\bf{1}}},\;{{\bf{v}}_{\bf{2}}}} \right\}\) and \(B = \left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\). Show that x is in the H and find the B coordinate vector of x, for

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{11}}}\\{ - {\bf{5}}}\\{{\bf{10}}}\\{\bf{7}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{14}}}\\{ - {\bf{8}}}\\{{\bf{13}}}\\{{\bf{10}}}\end{array}} \right)\), \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{\bf{19}}}\\{ - {\bf{13}}}\\{{\bf{18}}}\\{{\bf{15}}}\end{array}} \right)\)

Short Answer

Expert verified

\({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - \frac{5}{3}}\\{\frac{8}{3}}\end{array}} \right)\)

Step by step solution

01

Write the augmented matrix \(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right)\)

The augmented matrixcan be written as:

\(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right)\)

02

Write the augmented matrix in the echelon form

Consider matrix \(A = \left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right)\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left( {{\rm{ }}\begin{array}{*{20}{c}}{11}&{14}&{19;\;\;\begin{array}{*{20}{c}}{ - 5}&{ - 8}&{ - 13;\;\;\begin{array}{*{20}{c}}{10}&{13}&{18;\;\;\begin{array}{*{20}{c}}7&{10}&{15}\end{array}}\end{array}}\end{array}}\end{array}} \right);\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&{ - \frac{5}{3}}\\0&1&{\frac{8}{3}}\\0&0&0\\0&0&0\end{array}} \right)\)

03

Write the system of equations for x

For\({\bf{x}}\), using the augmented matrix, you get:

\({\bf{x}} = {c_1}{{\bf{x}}_1} + {c_2}{{\bf{x}}_2}\)

So, the values of\({c_1}\)and\({c_2}\)are:

\({c_1} = - \frac{5}{3}\)and\({c_2} = \frac{8}{3}\)

Therefore, the B-coordinate for vector \({\bf{x}}\) is \({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - \frac{5}{3}}\\{\frac{8}{3}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

(M) Show that \(\left\{ {t,sin\,t,cos\,{\bf{2}}t,sin\,t\,cos\,t} \right\}\) is a linearly independent set of functions defined on \(\mathbb{R}\). Start by assuming that

\({c_{\bf{1}}} \cdot t + {c_{\bf{2}}} \cdot sin\,t + {c_{\bf{3}}} \cdot cos\,{\bf{2}}t + {c_{\bf{4}}} \cdot sin\,t\,cos\,t = {\bf{0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\bf{5}} \right)\)

Equation (5) must hold for all real t, so choose several specific values of t (say, \(t = {\bf{0}},\,.{\bf{1}},\,.{\bf{2}}\)) until you get a system of enough equations to determine that the \({c_j}\) must be zero.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

Let \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).

  1. Show that \(T\)is a linear transformation.
  2. Let \(B\) be any element of \({M_{2 \times 2}}\) such that \({B^T} = B\). Find an \(A\) in \({M_{2 \times 2}}\) such that \(T\left( A \right) = B\).
  3. Show that the range of \(T\) is the set of \(B\) in \({M_{2 \times 2}}\) with the property that \({B^T} = B\).
  4. Describe the kernel of \(T\).

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free