Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 33 and 34, determine whether the sets of polynomials form a basis for \({{\bf{P}}_3}\). Justify your conclusions.

(M) \({\bf{5}} - {\bf{3}}t + {\bf{4}}{t^{\bf{2}}} + {\bf{2}}{t^{\bf{3}}}\), \({\bf{9}} + t + {\bf{8}}{t^{\bf{2}}} - {\bf{6}}{t^{\bf{3}}}\), \({\bf{6}} - {\bf{2}}t + {\bf{5}}{t^{\bf{2}}}\), \({t^{\bf{3}}}\)

Short Answer

Expert verified

Set S is not the basis for \({{\bf{P}}_3}\).

Step by step solution

01

Write the polynomial in the standard vector form

\(\left\{ {5 - 3t + 4{t^2} + 2{t^3},\;9 + t + 8{t^2} - 6{t^3},6 - 2\;t + 5{t^2},\;{t^3}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}5\\{ - 3}\\4\\2\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}9\\1\\8\\{ - 6}\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}6\\{ - 2}\\5\\0\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\end{array}} \right)} \right\}\)

02

Form the matrix using the vectors

The matrix formed by using the vectors of the polynomials is:

\(A = \left( {\begin{array}{*{20}{c}}5&9&6&0\\{ - 3}&1&{ - 2}&0\\4&8&5&0\\2&{ - 6}&0&1\end{array}} \right)\)

03

Write the matrix in the echelon form

Consider matrix\(A = \left( {\begin{array}{*{20}{c}}5&9&6&0\\{ - 3}&1&{ - 2}&0\\4&8&5&0\\2&{ - 6}&0&1\end{array}} \right)\).

Use code in the MATLAB to obtain the row-reducedechelon formas shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left( {{\rm{ }}\begin{array}{*{20}{c}}5&9&6&{0;\;\;\begin{array}{*{20}{c}}{ - 3}&1&{ - 2}&{0;\;\;\begin{array}{*{20}{c}}4&8&5&{0;\;\;\begin{array}{*{20}{c}}2&{ - 6}&0&1\end{array}}\end{array}}\end{array}}\end{array}} \right);\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}5&9&6&0\\{ - 3}&1&{ - 2}&0\\4&8&5&0\\2&{ - 6}&0&1\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&{\frac{3}{4}}&0\\0&1&{\frac{1}{4}}&0\\0&0&0&1\\0&0&0&0\end{array}} \right)\)

It can be observed from the echelon form that the last row is zero, which shows the set is linearly dependent.

Therefore, set S is not the basis for \({{\bf{P}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use Exercise 28 to explain why the equation\(Ax = b\)has a solution for all\({\rm{b}}\)in\({\mathbb{R}^m}\)if and only if the equation\({A^T}x = 0\)has only the trivial solution.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\1\\{ - 1}\\{ - 3}\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1\\{ - 5}&{ - 1}&0&{ - 2}\\9&{ - 11}&7&{ - 3}\\{19}&{ - 9}&7&1\end{array}} \right)\)

Consider the following two systems of equations:

\(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 1\\4{x_1} + {x_2} - 6{x_3} = 9\end{array}\) \(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 5\\4{x_1} + {x_2} - 6{x_3} = 45\end{array}\)

It can be shown that the first system of a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free