Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 33 and 34, determine whether the sets of polynomials form a basis for \({{\bf{P}}_3}\). Justify your conclusions.

(M) \({\bf{3}} + {\bf{7}}t\), \({\bf{5}} + t - {\bf{2}}{t^{\bf{3}}}\), \(t - {\bf{2}}{t^{\bf{2}}}\), \({\bf{1}} + {\bf{16}}t - {\bf{6}}{t^{\bf{2}}} + {\bf{2}}{t^{\bf{3}}}\)

Short Answer

Expert verified

Set S is not the basis for \({{\bf{P}}_3}\).

Step by step solution

01

Write the polynomials in the standard vector form

\(\left\{ {3 + 7t,\;5 + t - 2{t^3},\;t - 2{t^2},\;1 + 16t - 6{t^2} + 2{t^3}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}3\\7\\0\\0\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}5\\1\\0\\{ - 2}\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}0\\1\\{ - 2}\\0\end{array}} \right),\;\;\left( {\begin{array}{*{20}{c}}1\\{16}\\{ - 6}\\2\end{array}} \right)} \right\}\)

02

Form the matrix using the vectors

The matrix formed by using the vectors of the polynomials is:

\(A = \left( {\begin{array}{*{20}{c}}3&5&0&1\\7&1&1&{16}\\0&0&{ - 2}&{ - 6}\\0&{ - 2}&0&2\end{array}} \right)\)

03

Write the matrix in the echelon form

Consider matrix \(A = \left( {\begin{array}{*{20}{c}}3&5&0&1\\7&1&1&{16}\\0&0&{ - 2}&{ - 6}\\0&{ - 2}&0&2\end{array}} \right)\).

Use code in the MATLAB to obtain the row-reducedechelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left( {{\rm{ }}\begin{array}{*{20}{c}}3&5&0&{1;\;\;\begin{array}{*{20}{c}}7&1&1&{16;\;\;\begin{array}{*{20}{c}}0&0&{ - 2}&{ - 6;\;\;\begin{array}{*{20}{c}}0&{ - 2}&0&2\end{array}}\end{array}}\end{array}}\end{array}} \right);\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}3&5&0&1\\7&1&1&{16}\\0&0&{ - 2}&{ - 6}\\0&{ - 2}&0&2\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&2\\0&1&0&{ - 1}\\0&0&1&3\\0&0&0&0\end{array}} \right)\)

It can be observed from the echelon form that the last row is zero, which shows the set is linearly dependent.

Therefore, set S is not the basis for \({{\bf{P}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that the coordinate mapping is onto \({\mathbb{R}^n}\). That is, given any y in \({\mathbb{R}^n}\), with entries \({y_{\bf{1}}}\),….,\({y_n}\), produce u in V such that \({\left( {\bf{u}} \right)_B} = y\).

Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work

\({\left( {{\bf{1}} - t} \right)^{\bf{2}}}\),\(t - {\bf{2}}{t^{\bf{2}}} + {t^{\bf{3}}}\),\({\left( {{\bf{1}} - t} \right)^{\bf{3}}}\)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free