Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

Short Answer

Expert verified

\({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right]\)

Step by step solution

01

Determine vector \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\)

It is noted that the second row of the matrix is twice the first row. Therefore, when \({\mathop{\rm v}\nolimits} = \left( {1, - 3,4} \right)\), which is the first row of the matrix.

\(\begin{array}{c}{{\mathop{\rm uv}\nolimits} ^T} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right]\end{array}\)

Thus, \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\4\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use coordinate vector to test whether the following sets of poynomial span \({{\bf{P}}_{\bf{2}}}\). Justify your conclusions.

a. \({\bf{1}} - {\bf{3}}t + {\bf{5}}{t^{\bf{2}}}\), \( - {\bf{3}} + {\bf{5}}t - {\bf{7}}{t^{\bf{2}}}\), \( - {\bf{4}} + {\bf{5}}t - {\bf{6}}{t^{\bf{2}}}\), \({\bf{1}} - {t^{\bf{2}}}\)

b. \({\bf{5}}t + {t^{\bf{2}}}\), \({\bf{1}} - {\bf{8}}t - {\bf{2}}{t^{\bf{2}}}\), \( - {\bf{3}} + {\bf{4}}t + {\bf{2}}{t^{\bf{2}}}\), \({\bf{2}} - {\bf{3}}t\)

Justify the following equalities:

a.\({\rm{dim Row }}A{\rm{ + dim Nul }}A = n{\rm{ }}\)

b.\({\rm{dim Col }}A{\rm{ + dim Nul }}{A^T} = m\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)

In Exercise 5, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

5. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free