Chapter 4: Q32E (page 191)
Let \({{\bf{p}}_1}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = t - {\bf{3}}{t^{\bf{2}}}\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{1}} + t - {\bf{3}}{t^{\bf{2}}}\).
a. Use coordinate vectors to show that these polynomials form a basis of \({{\bf{P}}_{\bf{2}}}\).
b. Consider the basis \(B = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}}} \right\}\) for \({{\bf{P}}_{\bf{2}}}\). Find \({\bf{q}}\) in \({{\bf{P}}_{\bf{2}}}\), given that \({\left( {\bf{q}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\)
Short Answer
a. The set spans for \({P_2}\).
b. \({\bf{q}} = 1 + 3t - 10{t^2}\)