Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Short Answer

Expert verified
  1. It is proved that \(T\) is a linear transformation.
  2. The range of \(T\) is all of \({\mathbb{R}^2}\).

Step by step solution

01

State the condition for linear transformation

The conditions forlinear transformation\(T\)are as follows:

1.\(T\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) = T\left( {\mathop{\rm u}\nolimits} \right) + T\left( {\mathop{\rm v}\nolimits} \right)\) for all \({\mathop{\rm u}\nolimits} ,{\mathop{\rm v}\nolimits} \,\,{\mathop{\rm in}\nolimits} \,\,V\), and

2 \(T\left( {c{\mathop{\rm u}\nolimits} } \right) = cT\left( {\mathop{\rm u}\nolimits} \right)\) for all \({\mathop{\rm u}\nolimits} \,\,\,{\mathop{\rm in}\nolimits} \,\,V\) and all scalar \(c\).

02

Show that \(T\) is a linear transformation

a)

Suppose \({\mathop{\rm p}\nolimits} \) and \(q\) are arbitrary polynomials in \({{\mathop{\rm P}\nolimits} _2}\). Then

\(\begin{array}{c}T\left( {{\mathop{\rm p}\nolimits} + q} \right) = \left( {\begin{array}{*{20}{c}}{\left( {{\mathop{\rm p}\nolimits} + q} \right)\left( 0 \right)}\\{\left( {{\mathop{\rm p}\nolimits} + q} \right)\left( 1 \right)}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right) + {\mathop{\rm q}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right) + {\mathop{\rm q}\nolimits} \left( 1 \right)}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{{\mathop{\rm q}\nolimits} \left( 0 \right)}\\{{\mathop{\rm q}\nolimits} \left( 1 \right)}\end{array}} \right)\\ = T\left( {\mathop{\rm p}\nolimits} \right) + T\left( {\mathop{\rm q}\nolimits} \right)\end{array}\)

Consider \(c\) is any scalar. Then,

\(\begin{array}{c}T\left( {c{\mathop{\rm p}\nolimits} } \right) = \left( {\begin{array}{*{20}{c}}{\left( {c{\mathop{\rm p}\nolimits} } \right)\left( 0 \right)}\\{\left( {c{\mathop{\rm p}\nolimits} } \right)\left( 1 \right)}\end{array}} \right)\\ = c\left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\\ = cT\left( {\mathop{\rm p}\nolimits} \right)\end{array}\)

Therefore, \(T\) is a li\(T:{{\mathop{\rm P}\nolimits} _2} \to {\mathbb{R}^2}\)near transformation.

Thus, it is proved that \(T\) is a linear transformation.

03

 Determine polynomial \({\mathop{\rm p}\nolimits} \) in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\) 

b)

Any quadratic polynomial \({\mathop{\rm q}\nolimits} \) that has \({\mathop{\rm q}\nolimits} \left( 0 \right) = 0\) and \({\mathop{\rm q}\nolimits} \left( 1 \right) = 0\) will be included in the kernel of \(T\). Polynomial \({\mathop{\rm q}\nolimits} \) is then a multiple of \({\mathop{\rm p}\nolimits} \left( t \right) = t\left( {t - 1} \right)\).

04

Describe the range of T

It is given that any vector \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right)\) is in \({\mathbb{R}^2}\).

The polynomial \({\mathop{\rm p}\nolimits} = {{\mathop{\rm x}\nolimits} _1} + \left( {{{\mathop{\rm x}\nolimits} _2} - {{\mathop{\rm x}\nolimits} _1}} \right)t\) have values such that \({\mathop{\rm p}\nolimits} \left( 0 \right) = {{\mathop{\rm x}\nolimits} _1}\) and \({\mathop{\rm p}\nolimits} \left( 1 \right) = {{\mathop{\rm x}\nolimits} _2}\).

Therefore, the range of \(T\) is all of \({\mathbb{R}^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

Let be a basis of\({\mathbb{R}^n}\). .Produce a description of an \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)matrix A that implements the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\). Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)). (See Exercise 21.)

Given \(T:V \to W\) as in Exercise 35, and given a subspace \(Z\) of \(W\), let \(U\) be the set of all \({\mathop{\rm x}\nolimits} \) in \(V\) such that \(T\left( {\mathop{\rm x}\nolimits} \right)\) is in \(Z\). Show that \(U\) is a subspace of \(V\).

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free