Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose \(A\) is \(m \times n\)and \(b\) is in \({\mathbb{R}^m}\). What has to be true about the two numbers rank \(\left[ {A\,\,\,{\rm{b}}} \right]\) and \({\rm{rank}}\,A\) in order for the equation \(Ax = b\) to be consistent?

Short Answer

Expert verified

The condition \({\rm{rank}}\,\left[ {A\,\,\,{\rm{b}}} \right] = {\rm{rank}}\,A\) must be true about the two numbers rank \(\left[ {A\,\,\,{\rm{b}}} \right]\) and \({\rm{rank}}\,A\) in order for the equation \(Ax = b\) to be consistent.

Step by step solution

01

Assume an arbitrary system and relate the given statement with it

Consider the nonhomogeneous system \(Ax = b\) with the joint matrix \(\left[ {A\,\,\,{\rm{b}}} \right]\). If \(b\) is not a pivot column of the matrix \(\left[ {A\,\,\,{\rm{b}}} \right]\), then the rank of matrix \(A\) and the joint matrix \(\left[ {A\,\,\,{\rm{b}}} \right]\) are the same, that is, \({\rm{rank}}\,\left[ {A\,\,\,{\rm{b}}} \right] = {\rm{rank}}\,A\).

02

Use the existence and uniqueness theorem

By the existence and uniqueness theorem, a linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot. So, for the system to be consistent, \(b\) must not be a pivot column of the matrix \(\left[ {A\,\,\,{\rm{b}}} \right]\).

03

Draw a conclusion

If \(b\) is not a pivot column of the matrix \(\left[ {A\,\,\,{\rm{b}}} \right]\), then \({\rm{rank}}\,\left[ {A\,\,\,{\rm{b}}} \right] = {\rm{rank}}\,A\). So, the condition \({\rm{rank}}\,\left[ {A\,\,\,{\rm{b}}} \right] = {\rm{rank}}\,A\) is true about the two numbers rank \(\left[ {A\,\,\,{\rm{b}}} \right]\) and \({\rm{rank}}\,A\) in order for the equation \(Ax = b\) to be consistent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Verify that rank \({{\mathop{\rm uv}\nolimits} ^T} \le 1\) if \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 3}\\5\end{array}} \right]\) and \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}a\\b\\c\end{array}} \right]\).

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

In Exercise 17, Ais an \(m \times n\] matrix. Mark each statement True or False. Justify each answer.

17. a. The row space of A is the same as the column space of \({A^T}\].

b. If B is any echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for Row A.

c. The dimensions of the row space and the column space of A are the same, even if Ais not square.

d. The sum of the dimensions of the row space and the null space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent rank of a matrix.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

15. Let \(A\) be an \(m \times n\) matrix, and let \(B\) be a \(n \times p\) matrix such that \(AB = 0\). Show that \({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces \({\mathop{\rm Nul}\nolimits} A\), \({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and \({\mathop{\rm Col}\nolimits} B\) is contained in one of the other three subspaces.)

Suppose a nonhomogeneous system of nine linear equations in ten unknowns has a solution for all possible constants on the right sides of the equations. Is it possible to find two nonzero solutions of the associated homogeneous system that are not multiples of each other? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free