Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},{{\mathop{\rm c}\nolimits} _2}} \right\}\) be bases for a vector space \(V\), and suppose \({{\mathop{\rm b}\nolimits} _1} = - {{\mathop{\rm c}\nolimits} _1} + 4{{\mathop{\rm c}\nolimits} _2}\) and \({{\mathop{\rm b}\nolimits} _2} = 5{{\mathop{\rm c}\nolimits} _1} - 3{{\mathop{\rm c}\nolimits} _2}\).

a. Find the change-of-coordinates matrix from \(B\) to \(C\).

b. Find \({\left[ {\mathop{\rm x}\nolimits} \right]_c}\) for \({\mathop{\rm x}\nolimits} = 5{{\mathop{\rm b}\nolimits} _1} + 3{{\mathop{\rm b}\nolimits} _2}\). Use part (a).

Short Answer

Expert verified
  1. The change-of-coordinates matrix is \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{ - 1}&5\\4&{ - 3}\end{array}} \right]\).
  2. The \(C - \)coordinate vector is \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \left[ {\begin{array}{*{20}{c}}{10}\\{11}\end{array}} \right]\).

Step by step solution

01

Change-of-coordinate matrix

Theorem 15states that let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be the bases of a vector space \(V\). Then, there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \mathop P\limits_{C \leftarrow B} {\left[ {\mathop{\rm x}\nolimits} \right]_B}\).

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). Thus, \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]}_C}}&{{{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]}_C}}& \cdots &{{{\left[ {{{\mathop{\rm b}\nolimits} _n}} \right]}_C}}\end{array}} \right]\).

02

Determine the change-of-coordinate matrix from \(B\) to \(C\)

a)

Suppose \({{\mathop{\rm b}\nolimits} _1} = - {{\mathop{\rm c}\nolimits} _1} + 4{{\mathop{\rm c}\nolimits} _2}\) and \({{\mathop{\rm b}\nolimits} _2} = 5{{\mathop{\rm c}\nolimits} _1} - 3{{\mathop{\rm c}\nolimits} _2}\). Therefore, \({\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]_C} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right],{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]_C} = \left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\).

\(\begin{aligned} \mathop P\limits_{C \leftarrow B} &= \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]}_C}}&{{{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]}_C}}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1}&5\\4&{ - 3}\end{array}} \right]\end{aligned}\)

Thus, the change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{ - 1}&5\\4&{ - 3}\end{array}} \right]\).

03

Determine \({\left[ {\mathop{\rm x}\nolimits}  \right]_c}\) for \({\mathop{\rm x}\nolimits}  = 5{{\mathop{\rm b}\nolimits} _1} + 3{{\mathop{\rm b}\nolimits} _2}\)

b)

Suppose \({\mathop{\rm x}\nolimits} = 5{{\mathop{\rm b}\nolimits} _1} + 3{{\mathop{\rm b}\nolimits} _2}\), then \({\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}5\\3\end{array}} \right]\).

\(\begin{aligned} {\left[ {\mathop{\rm x}\nolimits} \right]_C} &= \mathop P\limits_{C \leftarrow B} {\left[ {\mathop{\rm x}\nolimits} \right]_B}\\ &= \left[ {\begin{array}{*{20}{c}}{ - 1}&5\\4&{ - 3}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\3\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 5 + 15}\\{20 - 9}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{10}\\{11}\end{array}} \right]\end{aligned}\)

Therefore, the \(C - \)coordinate vector is \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \left[ {\begin{array}{*{20}{c}}{10}\\{11}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the polynomials \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}},{p_{\bf{2}}}\left( t \right) = {\bf{1}} - {t^{\bf{2}}}\). Is \(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}}} \right\}\) a linearly independent set in \({{\bf{P}}_{\bf{3}}}\)? Why or why not?

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work

\({\left( {{\bf{1}} - t} \right)^{\bf{2}}}\),\(t - {\bf{2}}{t^{\bf{2}}} + {t^{\bf{3}}}\),\({\left( {{\bf{1}} - t} \right)^{\bf{3}}}\)

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

\({\bf{1}} - {\bf{2}}{t^{\bf{2}}} - {t^{\bf{3}}}\), \(t + {\bf{2}}{t^{\bf{3}}}\), \({\bf{1}} + t - {\bf{2}}{t^{\bf{2}}}\)

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).

Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free