Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(B = \left\{ {{v_1},...,{v_n}} \right\}\) be a linearly independent set in \({\mathbb{R}^{\bf{n}}}\). Explain why Bmust be a basis for \({\mathbb{R}^{\bf{n}}}\).

Short Answer

Expert verified

Set B is a basis for \({\mathbb{R}^n}\).

Step by step solution

01

State the invertible matrix theorem

Recall the invertible matrix theorem, which states that if the square matrix is invertible, then the columns are linearly independent, and the columns form a basis for \({\mathbb{R}^n}\).

02

Apply the invertible matrix theorem and the basis theorem

It is given that\(\left\{ {{v_1},...,{v_n}} \right\}\)are a set of vectors. It forms a square matrix of the order\(n \times n\), as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}& \cdots &{{{\bf{v}}_n}}\end{array}} \right]\)

It is given that\(B = \left\{ {{{\bf{v}}_1},...,{{\bf{v}}_n}} \right\}\)is a linearly independent set in\({\mathbb{R}^n}\). By the invertible matrix theorem, the columns of B span\({\mathbb{R}^n}\).

According to the basis theorem, if the columns of B span\({\mathbb{R}^n}\)and the columns arelinearly independent, then B must be a basis for \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

In Exercise 17, Ais an \(m \times n\] matrix. Mark each statement True or False. Justify each answer.

17. a. The row space of A is the same as the column space of \({A^T}\].

b. If B is any echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for Row A.

c. The dimensions of the row space and the column space of A are the same, even if Ais not square.

d. The sum of the dimensions of the row space and the null space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent rank of a matrix.

Define a linear transformation by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 0 \right)}\end{array}} \right)\). Find \(T:{{\mathop{\rm P}\nolimits} _2} \to {\mathbb{R}^2}\)polynomials \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _2}\) in \({{\mathop{\rm P}\nolimits} _2}\) that span the kernel of T, and describe the range of T.

Let \(V\) and \(W\) be vector spaces, and let \(T:V \to W\) be a linear transformation. Given a subspace \(U\) of \(V\), let \(T\left( U \right)\) denote the set of all images of the form \(T\left( {\mathop{\rm x}\nolimits} \right)\), where x is in \(U\). Show that \(T\left( U \right)\) is a subspace of \(W\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free