Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(B = \left\{ {{v_1},...,{v_n}} \right\}\) be a linearly independent set in \({\mathbb{R}^{\bf{n}}}\). Explain why Bmust be a basis for \({\mathbb{R}^{\bf{n}}}\).

Short Answer

Expert verified

Set B is a basis for \({\mathbb{R}^n}\).

Step by step solution

01

State the invertible matrix theorem

Recall the invertible matrix theorem, which states that if the square matrix is invertible, then the columns are linearly independent, and the columns form a basis for \({\mathbb{R}^n}\).

02

Apply the invertible matrix theorem and the basis theorem

It is given that\(\left\{ {{v_1},...,{v_n}} \right\}\)are a set of vectors. It forms a square matrix of the order\(n \times n\), as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}& \cdots &{{{\bf{v}}_n}}\end{array}} \right]\)

It is given that\(B = \left\{ {{{\bf{v}}_1},...,{{\bf{v}}_n}} \right\}\)is a linearly independent set in\({\mathbb{R}^n}\). By the invertible matrix theorem, the columns of B span\({\mathbb{R}^n}\).

According to the basis theorem, if the columns of B span\({\mathbb{R}^n}\)and the columns arelinearly independent, then B must be a basis for \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a\({\bf{6}} \times {\bf{3}}\)matrix A has a rank 3, find dim Nul A, dim Row A, and rank\({A^T}\).

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

\({\bf{1}} - {\bf{2}}{t^{\bf{2}}} - {t^{\bf{3}}}\), \(t + {\bf{2}}{t^{\bf{3}}}\), \({\bf{1}} + t - {\bf{2}}{t^{\bf{2}}}\)

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free