Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The first four Laguerre polynomials are \(1,1 - t,2 - 4t + {t^2}\), and \(6 - 18t + 9{t^2} - {t^5}\). Show that these polynomials form a basis of \({{\mathop{\rm P}\nolimits} _3}\).

Short Answer

Expert verified

It is proved that the first four Laguerre polynomials form a basis of \({{\mathop{\rm P}\nolimits} _3}\).

Step by step solution

01

Basis theorem

Theorem 12states that let\(V\)be a p-dimensional vector space;\(p \ge 1\), then anylinearly independent setof exactly \(p\) elements in \(V\) is automatically a basis for \(V\). Any set of exactly \(p\) elements that span \(V\) is automatically a basis for \(V\).

02

Show that the first four Laguerre polynomials form a basis of \({{\mathop{\rm P}\nolimits} _3}\)

The columns of the matrix are the coordinate vectors of the Laguerre polynomials corresponding to the standard basis\(\left\{ {1,t,{t^2},{t^3}} \right\}\)of\({{\mathop{\rm P}\nolimits} _3}\). Thus,

\(A = \left[ {\begin{array}{*{20}{c}}1&0&2&6\\0&{ - 1}&{ - 4}&{ - 18}\\0&0&1&9\\0&0&0&{ - 1}\end{array}} \right]\)

There are four pivot columns in the matrix; so its columns are linearly independent. The Laguerre polynomials themselves are linearly independent in\({{\mathop{\rm P}\nolimits} _3}\)because the coordinate vectors of Laguerre polynomials form a linearly independent set. The basis theorem asserts that the Laguerre polynomials form a basis for\({{\mathop{\rm P}\nolimits} _3}\)because there are four Hermite polynomials and\(\dim {{\mathop{\rm P}\nolimits} _3} = 4\).

Thus, it is proved that the first four Laguerre polynomials form a basis of \({{\mathop{\rm P}\nolimits} _3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

In Exercise 6, find the coordinate vector of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

6. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{6}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{0}}\end{array}} \right)\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

15. Let \(A\) be an \(m \times n\) matrix, and let \(B\) be a \(n \times p\) matrix such that \(AB = 0\). Show that \({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces \({\mathop{\rm Nul}\nolimits} A\), \({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and \({\mathop{\rm Col}\nolimits} B\) is contained in one of the other three subspaces.)

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free