Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equations’ right sides to make the new system inconsistent? Explain.

Short Answer

Expert verified

No, by using the rank theorem and the invertible matrix theorem.

Step by step solution

01

Describe the given statement

Consider the nonhomogeneous system \(Ax = b\), where A is the \(6 \times 8\) matrix. From the given statement, \({\rm{dim Null }}A = 2\).

02

Use the rank theorem

Bythe rank theorem, you get

\(\begin{aligned} {\rm{rank }}A &= n - {\rm{dim Null }}A\\ &= 8 - 2\\{\rm{rank }}A &= 6.\end{aligned}\)

As \({\rm{dim Col }}A = {\rm{rank }}A\), \({\rm{dim Col }}A = 6\). Since Col A is the subspace of \({\mathbb{R}^6}\), \({\rm{Col }}A = {\mathbb{R}^6}\).

03

Draw a conclusion

By the invertible matrix theorem, for everyb in \({\mathbb{R}^6}\), the system \(Ax = b\) has a unique solution. Hence, it is impossible to change the entries in b to convert \(Ax = b\) into an inconsistent system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that the coordinate mapping is onto \({\mathbb{R}^n}\). That is, given any y in \({\mathbb{R}^n}\), with entries \({y_{\bf{1}}}\),….,\({y_n}\), produce u in V such that \({\left( {\bf{u}} \right)_B} = y\).

(M) Show that \(\left\{ {t,sin\,t,cos\,{\bf{2}}t,sin\,t\,cos\,t} \right\}\) is a linearly independent set of functions defined on \(\mathbb{R}\). Start by assuming that

\({c_{\bf{1}}} \cdot t + {c_{\bf{2}}} \cdot sin\,t + {c_{\bf{3}}} \cdot cos\,{\bf{2}}t + {c_{\bf{4}}} \cdot sin\,t\,cos\,t = {\bf{0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\bf{5}} \right)\)

Equation (5) must hold for all real t, so choose several specific values of t (say, \(t = {\bf{0}},\,.{\bf{1}},\,.{\bf{2}}\)) until you get a system of enough equations to determine that the \({c_j}\) must be zero.

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a “system” of homogeneous equations.)

Question 11: Let\(S\)be a finite minimal spanning set of a vector space\(V\). That is,\(S\)has the property that if a vector is removed from\(S\), then the new set will no longer span\(V\). Prove that\(S\)must be a basis for\(V\).

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free