Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equations’ right sides to make the new system inconsistent? Explain.

Short Answer

Expert verified

No, by using the rank theorem and the invertible matrix theorem.

Step by step solution

01

Describe the given statement

Consider the nonhomogeneous system \(Ax = b\), where A is the \(6 \times 8\) matrix. From the given statement, \({\rm{dim Null }}A = 2\).

02

Use the rank theorem

Bythe rank theorem, you get

\(\begin{aligned} {\rm{rank }}A &= n - {\rm{dim Null }}A\\ &= 8 - 2\\{\rm{rank }}A &= 6.\end{aligned}\)

As \({\rm{dim Col }}A = {\rm{rank }}A\), \({\rm{dim Col }}A = 6\). Since Col A is the subspace of \({\mathbb{R}^6}\), \({\rm{Col }}A = {\mathbb{R}^6}\).

03

Draw a conclusion

By the invertible matrix theorem, for everyb in \({\mathbb{R}^6}\), the system \(Ax = b\) has a unique solution. Hence, it is impossible to change the entries in b to convert \(Ax = b\) into an inconsistent system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

\({\bf{1}} - {\bf{2}}{t^{\bf{2}}} - {t^{\bf{3}}}\), \(t + {\bf{2}}{t^{\bf{3}}}\), \({\bf{1}} + t - {\bf{2}}{t^{\bf{2}}}\)

Given \(T:V \to W\) as in Exercise 35, and given a subspace \(Z\) of \(W\), let \(U\) be the set of all \({\mathop{\rm x}\nolimits} \) in \(V\) such that \(T\left( {\mathop{\rm x}\nolimits} \right)\) is in \(Z\). Show that \(U\) is a subspace of \(V\).

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

If the null space of an \({\bf{8}} \times {\bf{5}}\) matrix A is 2-dimensional, what is the dimension of the row space of A?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free