Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(B = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}}} \right\}\), \(C = \left\{ {{{\bf{c}}_{\bf{1}}},\;{{\bf{c}}_{\bf{2}}}} \right\}\), and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},\,{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for a two-dimensional vector space.

a. Write an equation that relates the matrices \(\mathop P\limits_{C \leftarrow B} \), \(\mathop P\limits_{D \leftarrow C} \), and \(\mathop P\limits_{D \leftarrow B} \). Justify your result.

b. [M] use a matrix program either to help you find the equation or to check the equation you write. Work with three bases for \({\mathbb{R}^{\bf{2}}}\). (see Exercises 7-10)

Short Answer

Expert verified

a. \(\mathop P\limits_{D \leftarrow B} = \mathop P\limits_{D \leftarrow C} \mathop P\limits_{C \leftarrow B} \)

b. \(\left[ {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right]\)

Step by step solution

01

Find the stage matrix

The change of coordinate from B to C is

\({\left[ {\bf{x}} \right]_C} = \mathop P\limits_{C \to B} {\left[ {\bf{x}} \right]_B}\).

For a change of coordinate from C to D,

\({\left[ {\bf{x}} \right]_D} = \mathop P\limits_{D \to C} {\left[ {\bf{x}} \right]_C}\).

From both the equations,

\({\left[ {\bf{x}} \right]_D} = \mathop P\limits_{D \to C} \mathop P\limits_{C \to B} {\left[ {\bf{x}} \right]_B}\).

The change of coordinate matrix from B to Dis

\({\left[ {\bf{x}} \right]_D} = \mathop P\limits_{B \to D} {\left[ {\bf{x}} \right]_B}\).

Therefore, for any vector \({\left[ {\bf{x}} \right]_B}\) in \({\mathbb{R}^2}\),

\(\mathop P\limits_{D \leftarrow B} = \mathop P\limits_{D \leftarrow C} \mathop P\limits_{C \leftarrow B} \).

02

Find the change of coordinate matrix

The change of coordinate matrix from B to Cis

\(\left[ {\begin{array}{*{20}{c}}{{{\bf{c}}_1}}&{{{\bf{c}}_2}}&{{{\bf{b}}_1}}&{{{\bf{b}}_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&7&{ - 3}\\{ - 5}&2&5&{ - 1}\end{array}} \right]\).

Use the following code in MATLAB to obtain the row-reduced echelon form:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{ }}\begin{array}{*{20}{c}}1&{ - 2}&7&{ - 3;\,\,\begin{array}{*{20}{c}}{ - 5}&2&5&{ - 1}\end{array}}\end{array}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&7&{ - 3}\\{ - 5}&2&5&{ - 1}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&1\\0&1&{ - 5}&2\end{array}} \right]\)

So, the change of coordinate matrix from B to Cis

\(\mathop P\limits_{B \to C} = \left[ {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Given vectors, \({u_{\bf{1}}}\),….,\({u_p}\) and w in V, show that w is a linear combination of \({u_{\bf{1}}}\),….,\({u_p}\) if and only if \({\left( w \right)_B}\) is a linear combination of vectors \({\left( {{{\bf{u}}_{\bf{1}}}} \right)_B}\),….,\({\left( {{{\bf{u}}_p}} \right)_B}\).

Let \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).

  1. Show that \(T\)is a linear transformation.
  2. Let \(B\) be any element of \({M_{2 \times 2}}\) such that \({B^T} = B\). Find an \(A\) in \({M_{2 \times 2}}\) such that \(T\left( A \right) = B\).
  3. Show that the range of \(T\) is the set of \(B\) in \({M_{2 \times 2}}\) with the property that \({B^T} = B\).
  4. Describe the kernel of \(T\).

Let be a linear transformation from a vector space \(V\) \(T:V \to W\)in to vector space \(W\). Prove that the range of T is a subspace of . (Hint: Typical elements of the range have the form \(T\left( {\mathop{\rm x}\nolimits} \right)\) and \(T\left( {\mathop{\rm w}\nolimits} \right)\) for some \({\mathop{\rm x}\nolimits} ,\,{\mathop{\rm w}\nolimits} \)in \(V\).)\(W\)

Which of the subspaces \({\rm{Row }}A\) , \({\rm{Col }}A\), \({\rm{Nul }}A\), \({\rm{Row}}\,{A^T}\) , \({\rm{Col}}\,{A^T}\) , and \({\rm{Nul}}\,{A^T}\) are in \({\mathbb{R}^m}\) and which are in \({\mathbb{R}^n}\) ? How many distinct subspaces are in this list?.

Let H be an n-dimensional subspace of an n-dimensional vector space V. Explain why \(H = V\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free