Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 3}\end{array}} \right],{{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}2\\{ - 8}\end{array}} \right],{{\mathop{\rm v}\nolimits} _3} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\7\end{array}} \right]\) span \({\mathbb{R}^2}\) but do not form a basis. Find two different ways to express \(\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) as a linear combination of \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\).

Short Answer

Expert verified

The two different ways to express \(\left( {\begin{array}{*{20}{c}}1\\1\end{array}} \right)\) as a linear combination are \(5{{\mathop{\rm v}\nolimits} _1} - 2{{\mathop{\rm v}\nolimits} _2}\) and \(10{{\mathop{\rm v}\nolimits} _1} - 3{{\mathop{\rm v}\nolimits} _2} + {{\mathop{\rm v}\nolimits} _3}\).

Step by step solution

01

Write the vector equation as an augmented matrix

To solve the vector equation \({{\mathop{\rm x}\nolimits} _1}\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\end{array}} \right] + {{\mathop{\rm x}\nolimits} _2}\left[ {\begin{array}{*{20}{c}}2\\{ - 8}\end{array}} \right] + {{\mathop{\rm x}\nolimits} _3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\7\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\), convert it into the augmented matrix shown below:

\(\left[ {\begin{array}{*{20}{c}}1&2&{ - 3}&1\\{ - 3}&{ - 8}&7&1\end{array}} \right]\)

02

Apply the row operation

Perform an elementary row operation to produce the row-reduced echelon form of the matrix.

At row 2, multiply row 1 by 3 and add it to row 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&2&{ - 3}&1\\0&{ - 2}&{ - 2}&4\end{array}} \right)\)

At row 2, multiply row 2 by \( - \frac{1}{2}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&2&{ - 3}&1\\0&1&1&{ - 2}\end{array}} \right)\)

At row 1, multiply row 2 by 2 and subtract it from row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{ - 5}&5\\0&1&1&{ - 2}\end{array}} \right)\)

Hence, you can consider \({{\mathop{\rm x}\nolimits} _1} = 5 + 5{{\mathop{\rm x}\nolimits} _3}\) and \({{\mathop{\rm x}\nolimits} _2} = - 2 - {{\mathop{\rm x}\nolimits} _3}\), where \({{\mathop{\rm x}\nolimits} _3}\) is any real number.

03

Determine two different ways to express \(\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\) as a linear combination

Let \({{\mathop{\rm x}\nolimits} _3} = 0\) and \({{\mathop{\rm x}\nolimits} _3} = 1\) give two different ways to express \(\left( {\begin{array}{*{20}{c}}1\\1\end{array}} \right)\) as a linear combination of the vectors \(5{{\mathop{\rm v}\nolimits} _1} - 2{{\mathop{\rm v}\nolimits} _2}\) and \(10{{\mathop{\rm v}\nolimits} _1} - 3{{\mathop{\rm v}\nolimits} _2} + {{\mathop{\rm v}\nolimits} _3}\).

Thus, the two ways to express \(\left( {\begin{array}{*{20}{c}}1\\1\end{array}} \right)\) as a linear combination are \(5{{\mathop{\rm v}\nolimits} _1} - 2{{\mathop{\rm v}\nolimits} _2}\) and \(10{{\mathop{\rm v}\nolimits} _1} - 3{{\mathop{\rm v}\nolimits} _2} + {{\mathop{\rm v}\nolimits} _3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

17. A submatrix of a matrix A is any matrix that results from deleting some (or no) rows and/or columns of A. It can be shown that A has rank \(r\) if and only if A contains an invertible \(r \times r\) submatrix and no longer square submatrix is invertible. Demonstrate part of this statement by explaining (a) why an \(m \times n\) matrix A of rank \(r\) has an \(m \times r\) submatrix \({A_1}\) of rank \(r\), and (b) why \({A_1}\) has an invertible \(r \times r\) submatrix \({A_2}\).

The concept of rank plays an important role in the design of engineering control systems, such as the space shuttle system mentioned in this chapter’s introductory example. A state-space model of a control system includes a difference equation of the form

\({{\mathop{\rm x}\nolimits} _{k + 1}} = A{{\mathop{\rm x}\nolimits} _k} + B{{\mathop{\rm u}\nolimits} _k}\)for \(k = 0,1,....\) (1)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(\left\{ {{{\mathop{\rm x}\nolimits} _k}} \right\}\) is a sequence of “state vectors” in \({\mathbb{R}^n}\) that describe the state of the system at discrete times, and \(\left\{ {{{\mathop{\rm u}\nolimits} _k}} \right\}\) is a control, or input, sequence. The pair \(\left( {A,B} \right)\) is said to be controllable if

\({\mathop{\rm rank}\nolimits} \left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}& \cdots &{{A^{n - 1}}B}\end{array}} \right) = n\) (2)

The matrix that appears in (2) is called the controllability matrix for the system. If \(\left( {A,B} \right)\) is controllable, then the system can be controlled, or driven from the state 0 to any specified state \({\mathop{\rm v}\nolimits} \) (in \({\mathbb{R}^n}\)) in at most \(n\) steps, simply by choosing an appropriate control sequence in \({\mathbb{R}^m}\). This fact is illustrated in Exercise 18 for \(n = 4\) and \(m = 2\). For a further discussion of controllability, see this text’s website (Case study for Chapter 4).

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

In Exercise 17, Ais an \(m \times n\] matrix. Mark each statement True or False. Justify each answer.

17. a. The row space of A is the same as the column space of \({A^T}\].

b. If B is any echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for Row A.

c. The dimensions of the row space and the column space of A are the same, even if Ais not square.

d. The sum of the dimensions of the row space and the null space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent rank of a matrix.

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

Justify the following equalities:

a.\({\rm{dim Row }}A{\rm{ + dim Nul }}A = n{\rm{ }}\)

b.\({\rm{dim Col }}A{\rm{ + dim Nul }}{A^T} = m\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free