Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:In Exercises 15–18, find a basis for the space spanned by the given vectors,\({{\bf{v}}_{\bf{1}}}, \ldots ,{{\bf{v}}_{\bf{5}}}\).

17. \(\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right)\), \(\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{5}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{4}}\end{array}} \right)\), \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{4}}}\\{ - {\bf{9}}}\\{\bf{6}}\\{ - {\bf{7}}}\end{array}} \right)\), \(\left( {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{8}}\\{\bf{4}}\\{ - {\bf{7}}}\\{{\bf{10}}}\end{array}} \right)\), \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\\{{\bf{11}}}\\{ - {\bf{8}}}\\{ - {\bf{7}}}\end{array}} \right)\)

Short Answer

Expert verified

The basis for the space spanned by the vectors is \(\left\{ {\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\5\\1\\{ - 4}\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 4}\\{ - 9}\\6\\{ - 7}\end{array}} \right)} \right\}\).

Step by step solution

01

State the basis for Col A

The set of all linear combinations of the columns of matrix A is Col A.It is called the column space of A. Pivotcolumns are the basis for Col A.

02

Obtain the row-reduced echelon form

Consider the vectors\(\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}4\\5\\1\\{ - 4}\\4\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 4}\\{ - 9}\\6\\{ - 7}\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}6\\8\\4\\{ - 7}\\{10}\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}{ - 1}\\4\\{11}\\{ - 8}\\{ - 7}\end{array}} \right)\).

Five vectors span the column spaceof a matrix. So, construct matrix A by using the given vectors as shown below:

\(A = \left( {\begin{array}{*{20}{c}}8&4&{ - 1}&6&{ - 1}\\9&5&{ - 4}&8&4\\{ - 3}&1&{ - 9}&4&{11}\\{ - 6}&{ - 4}&6&{ - 7}&{ - 8}\\0&4&{ - 7}&{10}&{ - 7}\end{array}} \right)\)

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\( > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\)

\(\left( {\begin{array}{*{20}{c}}8&4&{ - 1}&6&{ - 1}\\9&5&{ - 4}&8&4\\{ - 3}&1&{ - 9}&4&{11}\\{ - 6}&{ - 4}&6&{ - 7}&{ - 8}\\0&4&{ - 7}&{10}&{ - 7}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{ - 1/2}&3\\0&1&0&{5/2}&{ - 7}\\0&0&1&0&{ - 3}\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\)

03

Write the basis for Col A

To identify the pivot and the pivot position, observe the leftmost column (nonzero column) matrix, that is, the pivot column. At the top of this column, 1 is the pivot.

\(A = \left[ {\begin{array}{*{20}{c}} {\boxed1}&0&0&{ - \frac{1}{2}}&3 \\ 0&{\boxed1}&0&{\frac{5}{2}}&{ - 7} \\ 0&0&{\boxed1}&0&{ - 3} \\ 0&0&0&0&0 \\ 0&0&0&0&0 \end{array}} \right]\)

The first, second, and third columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}4\\5\\1\\{ - 4}\\4\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 4}\\{ - 9}\\6\\{ - 7}\end{array}} \right)\)

The column space is shown below:

\({\rm{Col }}A = \left\{ {\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\5\\1\\{ - 4}\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 4}\\{ - 9}\\6\\{ - 7}\end{array}} \right)} \right\}\)

Thus, the basis for Col Ais \(\left\{ {\left( {\begin{array}{*{20}{c}}8\\9\\{ - 3}\\{ - 6}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\5\\1\\{ - 4}\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 4}\\{ - 9}\\6\\{ - 7}\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work

\({\left( {{\bf{1}} - t} \right)^{\bf{2}}}\),\(t - {\bf{2}}{t^{\bf{2}}} + {t^{\bf{3}}}\),\({\left( {{\bf{1}} - t} \right)^{\bf{3}}}\)

Suppose \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), \({{\bf{p}}_{\bf{3}}}\), and \({{\bf{p}}_{\bf{4}}}\) are specific polynomials that span a two-dimensional subspace H of \({P_{\bf{5}}}\). Describe how one can find a basis for H by examining the four polynomials and making almost no computations.

Let \(A\) be any \(2 \times 3\) matrix such that \({\mathop{\rm rank}\nolimits} A = 1\), let u be the first column of \(A\), and suppose \({\mathop{\rm u}\nolimits} \ne 0\). Explain why there is a vector v in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\). How could this construction be modified if the first column of \(A\) were zero?

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

13. Show that if \(P\) is an invertible \(m \times m\) matrix, then rank\(PA\)=rank\(A\).(Hint: Apply Exercise12 to \(PA\) and \({P^{ - 1}}\left( {PA} \right)\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free