Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \(B\) is a basis for a vector space \(V\).

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \(B\) is a basis for a vector space \(V\).

16.

  1. If\(B\)is the standard basis for\({\mathbb{R}^n}\)then the\(B\)-coordinate vector of an\({\mathop{\rm x}\nolimits} \)in\({\mathbb{R}^n}\)is x itself.
  2. The correspondence\({\left( {\mathop{\rm x}\nolimits} \right)_B} \mapsto {\mathop{\rm x}\nolimits} \)is called coordinate mapping.
  3. In some cases, a plane in\({\mathbb{R}^3}\)can be isomorphic to\({\mathbb{R}^2}\).

Short Answer

Expert verified

a. The given statement is true.

b. The given statement is false.

c. The given statement is true.

Step by step solution

01

Determine whether the given statement is true or false

a)

The entries in vector\({\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\6\end{array}} \right)\)are thecoordinates of\({\mathop{\rm x}\nolimits} \)relative to the standard basis \(\varepsilon = \left\{ {{{\mathop{\rm e}\nolimits} _1},{{\mathop{\rm e}\nolimits} _2}} \right\}\). If\(\varepsilon = \left\{ {{{\mathop{\rm e}\nolimits} _1},{{\mathop{\rm e}\nolimits} _2}} \right\}\), then\({\left( {\mathop{\rm x}\nolimits} \right)_\varepsilon } = {\mathop{\rm x}\nolimits} \).

Thus, statement (a) is true.

02

Determine whether the given statement is true or false

b)

Let\(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\)be a basis forvector space\(V\). Then the coordinate mapping \({\mathop{\rm x}\nolimits} \mapsto {\left( {\mathop{\rm x}\nolimits} \right)_B}\)is one-to-one linear transformation from\(V\)onto\({\mathbb{R}^n}\).

Thus, statement (b) is false.

03

Determine whether the given statement is true or false

c)

The plane isisomorphic to\({\mathbb{R}^2}\)if it passes through theorigin, as shown in Example 7.

Thus, statement (c) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]

Let \(A\) be any \(2 \times 3\) matrix such that \({\mathop{\rm rank}\nolimits} A = 1\), let u be the first column of \(A\), and suppose \({\mathop{\rm u}\nolimits} \ne 0\). Explain why there is a vector v in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\). How could this construction be modified if the first column of \(A\) were zero?

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free