Chapter 4: Q16E (page 191)
If A is a \({\bf{6}} \times {\bf{4}}\) matrix, what is the smallest possible dimension of Null A?
Short Answer
The smallest possible dimension of Null A is 0.
Chapter 4: Q16E (page 191)
If A is a \({\bf{6}} \times {\bf{4}}\) matrix, what is the smallest possible dimension of Null A?
The smallest possible dimension of Null A is 0.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the subspaces \({\rm{Row }}A\) , \({\rm{Col }}A\), \({\rm{Nul }}A\), \({\rm{Row}}\,{A^T}\) , \({\rm{Col}}\,{A^T}\) , and \({\rm{Nul}}\,{A^T}\) are in \({\mathbb{R}^m}\) and which are in \({\mathbb{R}^n}\) ? How many distinct subspaces are in this list?.
Question: Determine if the matrix pairs in Exercises 19-22 are controllable.
20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).
(calculus required) Define \(T:C\left( {0,1} \right) \to C\left( {0,1} \right)\) as follows: For f in \(C\left( {0,1} \right)\), let \(T\left( t \right)\) be the antiderivative \({\mathop{\rm F}\nolimits} \) of \({\mathop{\rm f}\nolimits} \) such that \({\mathop{\rm F}\nolimits} \left( 0 \right) = 0\). Show that \(T\) is a linear transformation, and describe the kernel of \(T\). (See the notation in Exercise 20 of Section 4.1.)
(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where
\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\1\\{ - 1}\\{ - 3}\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}7&6&{ - 4}&1\\{ - 5}&{ - 1}&0&{ - 2}\\9&{ - 11}&7&{ - 3}\\{19}&{ - 9}&7&1\end{array}} \right)\)
If a\({\bf{6}} \times {\bf{3}}\)matrix A has a rank 3, find dim Nul A, dim Row A, and rank\({A^T}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.