Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:In Exercises 15–18, find a basis for the space spanned by the given vectors,\({{\bf{v}}_{\bf{1}}}, \ldots ,{{\bf{v}}_{\bf{5}}}\).

15. \(\left[ {\begin{array}{*{20}{c}}1\\{\bf{0}}\\{ - {\bf{3}}}\\{\bf{2}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{2}}\\{ - {\bf{3}}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{ - {\bf{4}}}\\{\bf{1}}\\{\bf{6}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{8}}}\\7\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{ - {\bf{6}}}\\{\bf{9}}\end{array}} \right]\)

Short Answer

Expert verified

The basis for the space spanned by the vectors is \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}0\\1\\2\\{ - 3}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\{ - 8}\\7\end{array}} \right]} \right\}\).

Step by step solution

01

State the basis for Col A

The set of all linear combinations of the columns of matrix A is Col A.It is called the column space of A. Pivot columns are the basis for Col A.

02

Obtain the row-reduced echelon form

Consider the vectors\(\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\\2\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}0\\1\\2\\{ - 3}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 4}\\1\\6\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\{ - 8}\\7\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}2\\1\\{ - 6}\\9\end{array}} \right]\).

Five vectors span the column spaceof a matrix. So, construct matrix A using the given vectors as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&1&2\\0&1&{ - 4}&{ - 3}&1\\{ - 3}&2&1&{ - 8}&{ - 6}\\2&{ - 3}&6&7&9\end{array}} \right]\)

Obtain theechelon formof matrix A as shown below:

Add 3 times row 1 to row 3 to get row 3.

\(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&1&2\\0&1&{ - 4}&{ - 3}&1\\0&2&{ - 8}&{ - 5}&0\\2&{ - 3}&6&7&9\end{array}} \right]\)

Add\( - 2\)times row 1 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&1&2\\0&1&{ - 4}&{ - 3}&1\\0&2&{ - 8}&{ - 5}&0\\0&{ - 3}&{12}&5&5\end{array}} \right]\)

Add\( - 2\)times row 2 to row 3 to get row 3. Then, add 3 times row 2 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&1&2\\0&1&{ - 4}&{ - 3}&1\\0&0&0&1&{ - 2}\\0&0&0&{ - 4}&8\end{array}} \right]\)

Add\( - 1\)timesrow 3 to row 1 to get row 1. And add 3row3 to row 2 to get row 2. Then, add 4 times row 3 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&4\\0&1&{ - 4}&0&{ - 5}\\0&0&0&1&{ - 2}\\0&0&0&0&0\end{array}} \right]\)

03

Write the basis for Col A

To identify the pivot and the pivot position, observe the leftmost column (nonzero column) of the matrix, that is, the pivot column. At the top of this column, 1 is the pivot.

\(A = \left[ {\begin{array}{*{20}{c}} {\boxed1}&0&{ - 3}&0&4 \\ 0&{\boxed1}&{ - 4}&0&{ - 5} \\ 0&0&0&{\boxed1}&{ - 2} \\ 0&0&0&0&0 \end{array}} \right]\)

The first, second, and fourth columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\\2\end{array}} \right]\),\(\left[ {\begin{array}{*{20}{c}}0\\1\\2\\{ - 3}\end{array}} \right]\),\(\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\{ - 8}\\7\end{array}} \right]\)

The column space is shown below:

\({\rm{Col }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}0\\1\\2\\{ - 3}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\{ - 8}\\7\end{array}} \right]} \right\}\)

Thus, the basis for Col Ais \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}0\\1\\2\\{ - 3}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\{ - 8}\\7\end{array}} \right]} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{2}}}\)on the line\(y = {\bf{5}}x\).

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

Let \(A\) be an \(m \times n\) matrix of rank \(r > 0\) and let \(U\) be an echelon form of \(A\). Explain why there exists an invertible matrix \(E\) such that \(A = EU\), and use this factorization to write \(A\) as the sum of \(r\) rank 1 matrices. [Hint: See Theorem 10 in Section 2.4.]

(M) Show thatis a linearly independent set of functions defined on. Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free