Chapter 4: Q15E (page 191)
If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?
Short Answer
The smallest possible dimension of Null A is 2.
Chapter 4: Q15E (page 191)
If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?
The smallest possible dimension of Null A is 2.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn statistical theory, a common requirement is that a matrix be of full rank. That is, the rank should be as large as possible. Explain why an m n matrix with more rows than columns has full rank if and only if its columns are linearly independent.
Suppose \(A\) is \(m \times n\)and \(b\) is in \({\mathbb{R}^m}\). What has to be true about the two numbers rank \(\left[ {A\,\,\,{\rm{b}}} \right]\) and \({\rm{rank}}\,A\) in order for the equation \(Ax = b\) to be consistent?
Question: Determine if the matrix pairs in Exercises 19-22 are controllable.
20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).
Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).
16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).
(Hint: Write \(A + B\) as the product of two partitioned matrices.)
Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix\(A\)is\(m \times n\).
15. Let\(A\)be an\(m \times n\)matrix, and let\(B\)be a\(n \times p\)matrix such that\(AB = 0\). Show that\({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces\({\mathop{\rm Nul}\nolimits} A\),\({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and\({\mathop{\rm Col}\nolimits} B\)is contained in one of the other three subspaces.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.