Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 13 and 14, assume that A is row equivalent to B. Find bases for NulA and Col A.

14. \(A = \left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{11}&{ - 3}\\2&4&{ - 5}&{15}&2\\1&2&0&4&5\\3&6&{ - 5}&{19}&{ - 2}\end{array}} \right]\), \(B = \left[ {\begin{array}{*{20}{c}}1&2&0&4&5\\0&0&5&{ - 7}&8\\0&0&0&0&{ - 9}\\0&0&0&0&0\end{array}} \right]\)

Short Answer

Expert verified

The basis for Col Ais \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\2\\1\\3\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 5}\\0\\{ - 5}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 3}\\2\\5\\{ - 2}\end{array}} \right]} \right\}\). The basis for NulAis \(\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\0\\{\frac{7}{5}}\\1\\0\end{array}} \right]} \right\}\).

Step by step solution

01

State the basis for NulA and Col A

The set of alllinear combinations of the columns of matrix A is Col A.It is called thecolumn space of A. Pivot columns are thebasis for Col A.

The set of all homogeneous equationsolutions,\(A{\bf{x}} = 0\), is NulA.It is called the null spaceof A.

02

Write the basis for Col A

To identify the pivot and the pivot position, observe the leftmost column (nonzero column) of the matrix, that is, the pivot column. At the top of this column, 1 is the pivot.

B = \(\left[ {\begin{array}{*{20}{c}} {\boxed1}&2&0&4&5 \\ 0&0&{\boxed5}&{ - 7}&8 \\ 0&0&0&0&{\boxed{ - 9}} \\ 0&0&0&0&0 \end{array}} \right]\)

The first, third and fifth columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left[ {\begin{array}{*{20}{c}}1\\2\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 5}\\0\\{ - 5}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 3}\\2\\5\\{ - 2}\end{array}} \right]\)

The column space is shown below:

\({\rm{Col }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\2\\1\\3\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 5}\\0\\{ - 5}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 3}\\2\\5\\{ - 2}\end{array}} \right]} \right\}\)

Thus, the basis for Col Ais \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\2\\1\\3\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 5}\\0\\{ - 5}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 3}\\2\\5\\{ - 2}\end{array}} \right]} \right\}\).

03

Write the basis for Nul A

It is given that there are five columns in the given matrix.It means there should be five entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}Ax = 0\\\left[ {\begin{array}{*{20}{c}}1&2&0&4&5\\0&0&5&{ - 7}&8\\0&0&0&0&{ - 9}\\0&0&0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\end{array}\)

The system of equations obtained is shown below:

\(\begin{array}{c}{x_1} + 2{x_2} + 4{x_4} + 5{x_5} = 0\\5{x_3} - 7{x_4} + 8{x_5} = 0\\ - 9{x_5} = 0\end{array}\)

Or,

\({x_5} = 0\)

From the above equations, \({x_1}\),\({x_3}\), and \({x_5}\) are the pivot positions. So, \({x_1}\), \({x_3}\), and \({x_5}\)are the basic variables, and \({x_2}\)and\({x_4}\) are the free variables.

Let \({x_2} = a\), \({x_4} = b\).

Substitute the values\({x_2} = a\) and \({x_4} = b\) in the equation \({x_1} + 2{x_2} + 4{x_4} + 5{x_5} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_1} + 2\left( a \right) + 4\left( b \right) + 5\left( 0 \right) = 0\\{x_1} = - 2a - 4b\end{array}\)

Substitute the values\({x_2} = a\) and \({x_4} = b\) in the equation \(5{x_3} - 7{x_4} + 8{x_5} = 0\) to obtain the general solution.

\(\begin{aligned}{}5{x_3} - 7\left( b \right) + 8\left( 0 \right) &= 0\\{x_3} &= \frac{7}{5}b\end{aligned}\)

Obtain the vector in the parametric form using \({x_1} = - 2a - 4b\), \({x_2} = a\), \[{x_3} = 7b\],\({x_4} = b\), and \({x_5} = 0\).

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2a - 4b}\\a\\{\frac{7}{5}b}\\b\\0\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 2a}\\a\\0\\0\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4b}\\0\\{\frac{7}{5}b}\\b\\0\end{array}} \right]\\ = a\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{ - 4}\\0\\{\frac{7}{5}}\\1\\0\end{array}} \right]\\ = {x_2}\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}{ - 4}\\0\\{\frac{7}{5}}\\1\\0\end{array}} \right]\end{array}\)

The basis of Nul A is shown below:

\({\rm{Nul }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\0\\{\frac{7}{5}}\\1\\0\end{array}} \right]} \right\}\)

Thus, the basis for NulAis \(\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\0\\{\frac{7}{5}}\\1\\0\end{array}} \right]} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(calculus required) Define \(T:C\left( {0,1} \right) \to C\left( {0,1} \right)\) as follows: For f in \(C\left( {0,1} \right)\), let \(T\left( t \right)\) be the antiderivative \({\mathop{\rm F}\nolimits} \) of \({\mathop{\rm f}\nolimits} \) such that \({\mathop{\rm F}\nolimits} \left( 0 \right) = 0\). Show that \(T\) is a linear transformation, and describe the kernel of \(T\). (See the notation in Exercise 20 of Section 4.1.)

Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work

\({\left( {{\bf{1}} - t} \right)^{\bf{2}}}\),\(t - {\bf{2}}{t^{\bf{2}}} + {t^{\bf{3}}}\),\({\left( {{\bf{1}} - t} \right)^{\bf{3}}}\)

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free