Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If A is a \({\bf{4}} \times {\bf{3}}\) matrix, what is the largest possible dimension of the row space of A? If Ais a \({\bf{3}} \times {\bf{4}}\) matrix, what is the largest possible dimension of the row space of A? Explain.

Short Answer

Expert verified

If A is a \(4 \times 3\) matrix, then the largest possible dimension of the row space of A is 3.

If Ais a \(3 \times 4\) matrix, then the largest possible dimension of the row space of A is 3.

Step by step solution

01

Use the rank theorem

Note that the number of pivots in A gives the dimension of its column space.

By the rank theorem, \(\dim {\rm{Col}}\,A = \dim {\rm{Row}}\,A = {\rm{rank}}\,A\).

02

Compute the dimension of the row space for \({\bf{4}} \times {\bf{3}}\) matrix

If A is a \(4 \times 3\) matrix, then the number of pivots cannot exceed the number of columns. Here, the number of columns is minimum. Hence, the largest possible dimension of the row space of A is 3.

03

Compute the dimension of the row space for \({\bf{3}} \times {\bf{4}}\) matrix

If A is a \(3 \times 4\) matrix, then the number of pivots cannot exceed the number of rows. Here, the number of rows is minimum. Hence, the largest possible dimension of the row space of A is 3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

Question 11: Let\(S\)be a finite minimal spanning set of a vector space\(V\). That is,\(S\)has the property that if a vector is removed from\(S\), then the new set will no longer span\(V\). Prove that\(S\)must be a basis for\(V\).

A scientist solves a nonhomogeneous system of ten linear equations in twelve unknowns and finds that three of the unknowns are free variables. Can the scientist be certain that, if the right sides of the equations are changed, the new nonhomogeneous system will have a solution? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free