Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

  1. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\). (Hint: Explain why every vector in the column space of \(AB\) is in the column space of \(A\).
  2. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\). (Hint: Use part (a) to study rank\({\left( {AB} \right)^T}\).)

Short Answer

Expert verified
  1. It is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} A\).
  2. It is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} B\).

Step by step solution

01

Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\)

a)

According to the theorem 11let \(H\) be a subspace of a finite-dimensional vector space \(V\), any linearly independent set can be expanded, if necessary, to a basis for \(H\). Also, \(H\) is finite-dimensional such that \(\dim H \le \dim V\).

Consider \({\mathop{\rm y}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} AB\), then \({\mathop{\rm y}\nolimits} = AB\) for some \({\mathop{\rm x}\nolimits} \). However, as \(AB{\mathop{\rm x}\nolimits} = A\left( {B{\mathop{\rm x}\nolimits} } \right)\), \({\mathop{\rm y}\nolimits} = A\left( {B{\mathop{\rm x}\nolimits} } \right)\), and \({\mathop{\rm y}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\). Therefore, \({\mathop{\rm Col}\nolimits} AB\) is a subspace of \({\mathop{\rm Col}\nolimits} A\), and \({\mathop{\rm rank}\nolimits} AB = \dim {\mathop{\rm Col}\nolimits} AB \le \dim {\mathop{\rm Col}\nolimits} A = {\mathop{\rm rank}\nolimits} A\) (according to theorem 11).

Thus, it is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} A\).

02

Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\)

b)

The rank theoremstates that the dimensions of the column space and the row space of a \(m \times n\) matrix \(A\) are equal. This common dimension (the rank of \(A\)) also equals the number of pivot positions in \(A\) and satisfies the equation \({\mathop{\rm rank}\nolimits} A + \dim {\mathop{\rm Nul}\nolimits} A = n\).

\(\begin{array}{c}{\mathop{\rm rank}\nolimits} AB = {\mathop{\rm rank}\nolimits} {\left( {AB} \right)^T}\\ = {\mathop{\rm rank}\nolimits} {B^T}{A^T}\\ \le {\mathop{\rm rank}\nolimits} {B^T}\\ = {\mathop{\rm rank}\nolimits} B\end{array}\)

Thus, it is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} B\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

Justify the following equalities:

a.\({\rm{dim Row }}A{\rm{ + dim Nul }}A = n{\rm{ }}\)

b.\({\rm{dim Col }}A{\rm{ + dim Nul }}{A^T} = m\)

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

A homogeneous system of twelve linear equations in eight unknowns has two fixed solutions that are not multiples of each other, and all other solutions are linear combinations of these two solutions. Can the set of all solutions be described with fewer than twelve homogeneous linear equations? If so, how many? Discuss.

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free