Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 11 and 12, use an inverse matrix to find for the given and \(B\).

12. \(B = \left\{ {\left( {\begin{array}{*{20}{c}}4\\5\end{array}} \right),\left( {\begin{array}{*{20}{c}}6\\7\end{array}} \right)} \right\},{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}2\\0\end{array}} \right)\)

Short Answer

Expert verified

The \(B\)-coordinate vector is \({\left( {\mathop{\rm x}\nolimits} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - 7}\\5\end{array}} \right)\).

Step by step solution

01

State the change of coordinate from B

Let \({P_B} = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}& \cdots &{{{\mathop{\rm b}\nolimits} _n}}\end{array}} \right)\), then thevector equation\({\mathop{\rm x}\nolimits} = {c_1}{{\mathop{\rm b}\nolimits} _1} + {c_2}{{\mathop{\rm b}\nolimits} _2} + ... + {c_n}{{\mathop{\rm b}\nolimits} _n}\)becomes equivalent to \({\mathop{\rm x}\nolimits} = {P_B}{\left( {\mathop{\rm x}\nolimits} \right)_B}\). \({P_B}\) represents the change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^n}\).

Multiplication by \(P_B^{ - 1}\) on the L.H.S converts \({\mathop{\rm x}\nolimits} \) into its \(B\)-coordinate vector:

\(P_B^{ - 1}{\mathop{\rm x}\nolimits} = {\left( {\mathop{\rm x}\nolimits} \right)_B}\)

02

Use an inverse matrix to determine \({\left( {\mathop{\rm x}\nolimits}  \right)_B}\)

The change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^2}\) is shown below.

\(\begin{array}{c}{P_B} = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4&6\\5&7\end{array}} \right)\end{array}\)

Multiply the L.H.S of the equation \({\mathop{\rm x}\nolimits} = {P_B}{\left( {\mathop{\rm x}\nolimits} \right)_B}\) by \(P_B^{ - 1}\) to convert \({\mathop{\rm x}\nolimits} \) into its \(B\)-coordinate vector.

\(\begin{array}{c}{\left( {\mathop{\rm x}\nolimits} \right)_B} = P_B^{ - 1}{\mathop{\rm x}\nolimits} \\ = {\left( {\begin{array}{*{20}{c}}4&6\\5&7\end{array}} \right)^{ - 1}}\left( {\begin{array}{*{20}{c}}2\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{7}{2}}&3\\{\frac{5}{2}}&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}2\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 7 + 0}\\{5 + 0}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 7}\\5\end{array}} \right)\end{array}\)\({\left( {\mathop{\rm x}\nolimits} \right)_B}\)

Thus, the \(B\)-coordinate vector is \({\left( {\mathop{\rm x}\nolimits} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - 7}\\5\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In statistical theory, a common requirement is that a matrix be of full rank. That is, the rank should be as large as possible. Explain why an m n matrix with more rows than columns has full rank if and only if its columns are linearly independent.

Consider the following two systems of equations:

\(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 1\\4{x_1} + {x_2} - 6{x_3} = 9\end{array}\) \(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 5\\4{x_1} + {x_2} - 6{x_3} = 45\end{array}\)

It can be shown that the first system of a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

Consider the polynomials , and \({p_{\bf{3}}}\left( t \right) = {\bf{2}}\) \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + t,{p_{\bf{2}}}\left( t \right) = {\bf{1}} - t\)(for all t). By inspection, write a linear dependence relation among \({p_{\bf{1}}},{p_{\bf{2}}},\) and \({p_{\bf{3}}}\). Then find a basis for Span\(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}},{p_{\bf{3}}}} \right\}\).

In Exercise 6, find the coordinate vector of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

6. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{6}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{0}}\end{array}} \right)\)

What would you have to know about the solution set of a homogenous system of 18 linear equations 20 variables in order to understand that every associated nonhomogenous equation has a solution? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free