Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]

Short Answer

Expert verified

S must be a basis of V.

Step by step solution

01

Find a vector v in set V

Let \(S = \left\{ {{{\bf{v}}_1},\,{{\bf{v}}_2},.....,{{\bf{v}}_p}} \right\}\).

Assume that S does not span V.

Therefore, \(V \ne {\rm{Span}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},....,{{\bf{v}}_p}} \right\}\).

Then, there must be a vector v in set V that is not in the \({\rm{Span}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},....{{\bf{v}}_p}} \right\}\).

02

Check for linear independency

Let \(S'\) be a set formed by

\(\begin{aligned} S' &= S \cup \left\{ {\bf{v}} \right\}\\ &= \left\{ {{{\bf{v}}_1},{{\bf{v}}_2},.....,{{\bf{v}}_p},{\bf{v}}} \right\}\end{aligned}\).

The set \(S'\) is also a linearly independent set, but the number of elements in the set \(S'\) is more than \(S\)(contradiction).

So, S must be a basis of V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

In Exercise 6, find the coordinate vector of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

6. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{6}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{0}}\end{array}} \right)\)

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free