Chapter 4: Q10Q (page 191)
In Exercises 9 and 10, find the change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^n}\).
10. \(B = \left\{ {\left[ {\begin{array}{*{20}{c}}3\\{ - 1}\\4\end{array}} \right],\left[ {\begin{array}{*{20}{c}}2\\0\\{ - 5}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}8\\{ - 2}\\7\end{array}} \right]} \right\}\)
Short Answer
The change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^3}\) is \({P_B} = \left[ {\begin{array}{*{20}{c}}3&2&8\\{ - 1}&0&{ - 2}\\4&{ - 5}&7\end{array}} \right]\).