Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9 and 10, find the change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^n}\).

10. \(B = \left\{ {\left[ {\begin{array}{*{20}{c}}3\\{ - 1}\\4\end{array}} \right],\left[ {\begin{array}{*{20}{c}}2\\0\\{ - 5}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}8\\{ - 2}\\7\end{array}} \right]} \right\}\)

Short Answer

Expert verified

The change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^3}\) is \({P_B} = \left[ {\begin{array}{*{20}{c}}3&2&8\\{ - 1}&0&{ - 2}\\4&{ - 5}&7\end{array}} \right]\).

Step by step solution

01

State the change of coordinates

Let\({P_B} = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}& \cdots &{{{\mathop{\rm b}\nolimits} _n}}\end{array}} \right]\), then thevector equation\[{\mathop{\rm x}\nolimits} = {c_1}{{\mathop{\rm b}\nolimits} _1} + {c_2}{{\mathop{\rm b}\nolimits} _2} + ... + {c_n}{{\mathop{\rm b}\nolimits} _n}\] becomes equivalent to \({\mathop{\rm x}\nolimits} = {P_B}{\left[ {\mathop{\rm x}\nolimits} \right]_B}\). \({P_B}\) denotes thechange-of-coordinates matrixfrom \(B\) to the standard basis in \({\mathbb{R}^n}\).

02

Determine the change-of-coordinates matrix from \(B\)

The change-of-coordinates matrix from\(B\)to the standard basis in\({\mathbb{R}^3}\)is shown below.

\[\begin{array}{c}{P_B} = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}&{{{\mathop{\rm b}\nolimits} _3}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}3&2&8\\{ - 1}&0&{ - 2}\\4&{ - 5}&7\end{array}} \right]\end{array}\]

Thus, the change-of-coordinates matrix from \(B\) to the standard basis in \({\mathbb{R}^3}\) is \({P_B} = \left[ {\begin{array}{*{20}{c}}3&2&8\\{ - 1}&0&{ - 2}\\4&{ - 5}&7\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free