Chapter 4: Q10E (page 191)
Question 10: Determine if \(P = \left[ {\begin{array}{*{20}{c}}1&{.2}\\0&{.8}\end{array}} \right]\) is a regular stochastic matrix.
Short Answer
\(P\)is not a regular stochastic matrix.
Chapter 4: Q10E (page 191)
Question 10: Determine if \(P = \left[ {\begin{array}{*{20}{c}}1&{.2}\\0&{.8}\end{array}} \right]\) is a regular stochastic matrix.
\(P\)is not a regular stochastic matrix.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe null space of a \({\bf{5}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A.
(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where
\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)
Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)
In statistical theory, a common requirement is that a matrix be of full rank. That is, the rank should be as large as possible. Explain why an m n matrix with more rows than columns has full rank if and only if its columns are linearly independent.
In Exercise 3, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).
3. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{2}}\\{ - {\bf{2}}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{7}}}\\{\bf{0}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{ - {\bf{1}}}\end{array}} \right)\)
Let \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.