Chapter 4: Q10E (page 191)
If the null space of A \({\bf{7}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A?
Short Answer
The dimension of the column space of A is 1.
Chapter 4: Q10E (page 191)
If the null space of A \({\bf{7}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A?
The dimension of the column space of A is 1.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse Exercise 28 to explain why the equation\(Ax = b\)has a solution for all\({\rm{b}}\)in\({\mathbb{R}^m}\)if and only if the equation\({A^T}x = 0\)has only the trivial solution.
Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).
Let \(A\) be any \(2 \times 3\) matrix such that \({\mathop{\rm rank}\nolimits} A = 1\), let u be the first column of \(A\), and suppose \({\mathop{\rm u}\nolimits} \ne 0\). Explain why there is a vector v in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\). How could this construction be modified if the first column of \(A\) were zero?
Let \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).
Justify the following equalities:
a.\({\rm{dim Row }}A{\rm{ + dim Nul }}A = n{\rm{ }}\)
b.\({\rm{dim Col }}A{\rm{ + dim Nul }}{A^T} = m\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.