Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

Short Answer

Expert verified

a. The formula for \({{\mathop{\rm x}\nolimits} _4}\) is \({{\mathop{\rm x}\nolimits} _4} = M{\mathop{\rm u}\nolimits} \).

b. The control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) makes \({{\mathop{\rm x}\nolimits} _4} = M{\mathop{\rm u}\nolimits} \).

Step by step solution

01

State the difference equation in exercise 17

A state-space model of a control system includes a difference equation of the form

\({{\mathop{\rm x}\nolimits} _{k + 1}} = A{{\mathop{\rm x}\nolimits} _k} + B{{\mathop{\rm u}\nolimits} _k}\)for \(k = 0,1,...\) …(1)

The pair \(\left( {A,B} \right)\) is said to becontrollableif rank\(\left[ {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}& \cdots &{{A^{n - 1}}B}\end{array}} \right] = n\).

02

Write the formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix

a)

Consider \(A\) as a \(m \times n\) matrix with rank\(r\) and \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) as a sequence of input vectors in \({\mathbb{R}^2}\).

Use the equation \({{\mathop{\rm x}\nolimits} _{k + 1}} = A{{\mathop{\rm x}\nolimits} _k} + B{{\mathop{\rm u}\nolimits} _k}\) for \(k = 0,1,...\) with \({{\mathop{\rm x}\nolimits} _0} = 0\) as shown below:

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = A{{\mathop{\rm x}\nolimits} _0} + B{{\mathop{\rm u}\nolimits} _0}\\ = B{{\mathop{\rm u}\nolimits} _0}\\{{\mathop{\rm x}\nolimits} _2} = A{{\mathop{\rm x}\nolimits} _1} + B{{\mathop{\rm u}\nolimits} _1}\\ = AB{{\mathop{\rm u}\nolimits} _0} + B{{\mathop{\rm u}\nolimits} _1}\end{array}\)

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _3} = A{{\mathop{\rm x}\nolimits} _2} + B{{\mathop{\rm u}\nolimits} _2}\\ = A\left( {AB{{\mathop{\rm u}\nolimits} _0} + B{{\mathop{\rm u}\nolimits} _1}} \right) + B{{\mathop{\rm u}\nolimits} _2}\\ = {A^2}B{{\mathop{\rm u}\nolimits} _0} + AB{{\mathop{\rm u}\nolimits} _1} + B{{\mathop{\rm u}\nolimits} _2}\end{array}\)

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _4} = A{{\mathop{\rm x}\nolimits} _3} + B{{\mathop{\rm u}\nolimits} _3}\\ = A\left( {{A^2}B{{\mathop{\rm u}\nolimits} _0} + AB{{\mathop{\rm u}\nolimits} _1} + B{{\mathop{\rm u}\nolimits} _2}} \right) + B{{\mathop{\rm u}\nolimits} _3}\\ = {A^3}B{{\mathop{\rm u}\nolimits} _0} + {A^2}B{{\mathop{\rm u}\nolimits} _1} + AB{{\mathop{\rm u}\nolimits} _2} + B{{\mathop{\rm u}\nolimits} _3}\\ = \left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}&{{A^3}B}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{{\mathop{\rm u}\nolimits} _3}}\\{{{\mathop{\rm u}\nolimits} _2}}\\{{{\mathop{\rm u}\nolimits} _1}}\\{{{\mathop{\rm u}\nolimits} _0}}\end{array}} \right)\\ = M{\mathop{\rm u}\nolimits} \end{array}\)

Matrix \(M\) has four rows since \(B\) does, and \(M\) has eight columns since \(B\) and each of the matrices \({A^k}B\) has two columns. Vector \({\mathop{\rm u}\nolimits} \) in the final equation is in \({\mathbb{R}^8}\) since each \({{\mathop{\rm u}\nolimits} _k}\) is in \({\mathbb{R}^2}\).

03

Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) 

b)

If the matrix pair \(\left( {A,B} \right)\) is controllable, then the controllability matrix has rank 4, with a pivot in every row, and the columns of \(M\) span \({\mathbb{R}^4}\). Therefore, for any vector \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^4}\), there exists a vector u in \({\mathbb{R}^8}\) such that \({\mathop{\rm v}\nolimits} = M{\mathop{\rm u}\nolimits} \).

According to part (a), \({{\mathop{\rm x}\nolimits} _4} = M{\mathop{\rm u}\nolimits} \) when \({\mathop{\rm u}\nolimits} \) is partitioned into a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\).

Thus, the control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) makes \({{\mathop{\rm x}\nolimits} _4} = M{\mathop{\rm u}\nolimits} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side of constants? Is it possible for such a system to have a unique solution for every right-hand side? Explain.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

Let \(V\) and \(W\) be vector spaces, and let \(T:V \to W\) be a linear transformation. Given a subspace \(U\) of \(V\), let \(T\left( U \right)\) denote the set of all images of the form \(T\left( {\mathop{\rm x}\nolimits} \right)\), where x is in \(U\). Show that \(T\left( U \right)\) is a subspace of \(W\).

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

If A is a \({\bf{7}} \times {\bf{5}}\) matrix, what is the largest possible rank of A? If Ais a \({\bf{5}} \times {\bf{7}}\) matrix, what is the largest possible rank of A? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free