Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

13. Show that if \(P\) is an invertible \(m \times m\) matrix, then rank\(PA\)=rank\(A\).(Hint: Apply Exercise12 to \(PA\) and \({P^{ - 1}}\left( {PA} \right)\).)

Short Answer

Expert verified

It is proved that \({\mathop{\rm rank}\nolimits} PA = {\mathop{\rm rank}\nolimits} A\).

Step by step solution

01

Show that \({\mathop{\rm rank}\nolimits} PA = {\mathop{\rm rank}\nolimits} A\)

Exercise 12 states that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\).

According to Exercise 12, \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} A\).

\(\begin{array}{c}{\mathop{\rm rank}\nolimits} A = {\mathop{\rm rank}\nolimits} \left( {{P^{ - 1}}P} \right)A\\ = {\mathop{\rm rank}\nolimits} {P^{ - 1}}\left( {PA} \right)\\ \le {\mathop{\rm rank}\nolimits} PA\\ = {\mathop{\rm rank}\nolimits} PA\end{array}\)

Thus, it is proved that \({\mathop{\rm rank}\nolimits} PA = {\mathop{\rm rank}\nolimits} A\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free