Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(S = \left\{ {{{\bf{v}}_1},\,{{\bf{v}}_2},\,{{\bf{v}}_3},\,{{\bf{v}}_4}} \right\}\) be an affinely independent set. Consider the points \({{\bf{p}}_{\bf{1}}},.....,{{\bf{p}}_{\bf{5}}}\) whose barycentric coordinates with respect to S are given by \(\left( {{\bf{2}},{\bf{0}},{\bf{0}}, - {\bf{1}}} \right)\), \(\left( {{\bf{0}},\frac{{\bf{1}}}{{\bf{2}}},\frac{{\bf{1}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{4}}}} \right)\), \(\left( {\frac{{\bf{1}}}{{\bf{2}}},{\bf{0}},\frac{{\bf{3}}}{{\bf{2}}}, - {\bf{1}}} \right)\), \(\left( {\frac{{\bf{1}}}{{\bf{3}}},\frac{{\bf{1}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{6}}}} \right)\), and \(\left( {\frac{{\bf{1}}}{{\bf{3}}},{\bf{0}},\frac{{\bf{2}}}{{\bf{3}}},{\bf{0}}} \right)\), respectively. Determine whether each of \({{\bf{p}}_{\bf{1}}},.....,{{\bf{p}}_{\bf{5}}}\) is inside,outside, or on the surface of conv S, a tetrahedron. Are any of these points on an edge of conv S?

Short Answer

Expert verified

\({{\bf{p}}_1}\) and \({{\bf{p}}_3}\) are outside the tetrahedron \({\rm{conv}}\,\,S\). \({{\bf{p}}_2}\) is on the face with vertices \({{\bf{v}}_2}\), \({{\bf{v}}_3}\), and \({{\bf{v}}_4}\). \({{\bf{p}}_4}\) is inside \({\rm{conv}}\,S\). \({{\bf{p}}_5}\) is on the edge between \({{\bf{v}}_1}\) and \({{\bf{v}}_3}\).

Step by step solution

01

Check for the first coordinate

The barycentric coordinatesof \({{\bf{p}}_1}\) and \({{\bf{p}}_3}\)has negative numbers, so \({{\bf{p}}_1}\) and \({{\bf{p}}_3}\) are outside the tetrahedron convex S.

02

Check for the second coordinate

For point \({{\bf{p}}_2}\), the first number is zero. Hence, \({{\bf{p}}_2}\) is on the face containing \({{\bf{v}}_2}\), \({{\bf{v}}_3}\), and \({{\bf{v}}_4}\).

03

Check for the third coordinate

The barycentric coordinates of the point \({{\bf{p}}_4}\) are positive, hence \({{\bf{p}}_4}\) is inside convex S.

04

Check for the fourth coordinate

Two barycentric coordinates in \({{\bf{p}}_5}\) are positive, and two of them are zero. Hence, \({{\bf{p}}_5}\) is on the edge of \({{\bf{v}}_1}\) and \({{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Let \(W = \left\{ {{{\bf{v}}_1},......,{{\bf{v}}_p}} \right\}\). Show that if \({\bf{x}}\) is orthogonal to each \({{\bf{v}}_j}\), for \(1 \le j \le p\), then \({\bf{x}}\) is orthogonal to every vector in \(W\).

Question: 30. Prove that the convex hull of a bounded set is bounded.

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free