Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A quartic Bézier curve is determined by five control points,

\({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{\rm{ }}{{\bf{p}}_{\bf{1}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{2}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{3}}}\)and \({{\bf{p}}_4}\):

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^4}{{\bf{p}}_0} + 4t{\left( {1 - t} \right)^3}{{\bf{p}}_1} + 6{t^2}{\left( {1 - t} \right)^2}{{\bf{p}}_2} + 4{t^3}\left( {1 - t} \right){{\bf{p}}_3} + {t^4}{{\bf{p}}_4}\)for \(0 \le t \le 1\)

Construct the quartic basis matrix \({M_B}\) for \({\bf{x}}\left( t \right)\).

Short Answer

Expert verified

The quartic basis matrix is \({M_B} = \left( {\begin{array}{{}}1&{ - 4}&6&{ - 4}&1\\0&4&{ - 12}&{12}&{ - 4}\\0&0&6&{ - 12}&6\\0&0&0&4&{ - 4}\\0&0&0&0&1\end{array}} \right)\).

Step by step solution

01

Step 1:Write vector of weights of \({\bf{x}}\left( t \right)\)

The weighted vector of \({\rm{x}}\left( t \right)\) is shown below:

\(\left( {\begin{array}{{}}{1 - 4t + 6{t^2} - 4{t^3} + {t^4}}\\{4t - 12{t^2} + 12{t^3} - 4{t^4}}\\{6{t^2} - 12{t^3} + 6{t^4}}\\\begin{array}{l}4{t^3} - 4{t^4}\\\,\,\,\,\,\,\,\,\,\,{t^4}\end{array}\end{array}} \right)\)

02

Step 2:The weighted vector

Factor the weighted vector as\({M_B}{\bf{u}}\left( t \right)\), where\({\bf{u}}\left( t \right)\)is the column vector involving ascending powers of t as shown below:

\({M_B}u\left( t \right) = \left( {\begin{array}{{}}1&{ - 4}&6&{ - 4}&1\\0&4&{ - 12}&{12}&{ - 4}\\0&0&6&{ - 12}&6\\0&0&0&4&{ - 4}\\0&0&0&0&1\end{array}} \right)\left( \begin{array}{l}1\\t\\{t^2}\\{t^3}\\{t^4}\end{array} \right)\)

03

Compare and write \({M_B}\)

Thus, the vector is \({M_B} = \left( {\begin{array}{{}}1&{ - 4}&6&{ - 4}&1\\0&4&{ - 12}&{12}&{ - 4}\\0&0&6&{ - 12}&6\\0&0&0&4&{ - 4}\\0&0&0&0&1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

22. If \(A \subset B\), then \(affA \subset aff B\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{5}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{3}}\end{array}} \right]\),\({p_1} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{0}}\end{array}} \right]\),\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({p_{\bf{6}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{7}}} = \left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{4}}\end{array}} \right]\)and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1}\),\({p_{\bf{2}}}\), and\({p_{\bf{3}}}\)with respect to S.
  3. On graph paper, sketch the triangle\(T\)with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\), extend the sides as in Figure 8, and plot the points\({p_{\bf{4}}}\),\({p_{\bf{5}}}\),\({p_{\bf{6}}}\), and\({p_{\bf{7}}}\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({p_{\bf{4}}}\),\({p_{\bf{5}}}\),\({p_{\bf{6}}}\), and\({p_{\bf{7}}}\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free