Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

8. \(A = \left( {\begin{array}{*{20}{c}}2&1\\1&1\\1&2\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}8\\6\\7\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\{3.5}\end{array}} \right)} \right\}\).

Step by step solution

01

The three inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The three matrix inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) yield the following system of inequalities:

  1. \(2{x_1} + {x_2} \le 8\)
  2. \({x_1} + {x_2} \le 6\)
  3. \({x_1} + 2{x_2} \le 7\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the three lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {x_2} = 0} \right)\) of the three lines are 4, 6, and 7, so \(\left( {4,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {x_1} = 0} \right)\) of the three lines are 8, 6, and 3.5, then \(\left( {0,3.5} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) and (b) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm b}\nolimits} }} = \left( {2,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) in (c) gives \(2 + 2\left( 4 \right) = 10 > 7\), so \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) is not in \({\mathop{\rm P}\nolimits} \). The intersection of (a) and (c) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }} = \left( {3,2} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }}\) in (b) gives \(3 + 2 = 5 < 6\). So, \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The four vertices of the polytope are \(\left( {0,0} \right),\left( {4,0} \right)\left( {3,2} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,3.5} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\{3.5}\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 26. Let \({\rm{q}} = \left( \begin{array}{l}2\\3\end{array} \right)\), \({\rm{p}} = \left( \begin{array}{l}6\\1\end{array} \right)\). Find a hyperplane \(\left( {f:d} \right)\) that strictly separates \(B\left( {{\rm{q}},3} \right)\) and \(B\left( {{\rm{p}},1} \right)\).

Question 4: Repeat Exercise 2 where \(m\) is the minimum value of \(f\) on \(S\) instead of the maximum value.

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 23.

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free