Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

8. \(\left( {\begin{array}{{}}0\\1\\{ - 2}\\1\end{array}} \right),\left( {\begin{array}{{}}1\\1\\0\\2\end{array}} \right),\left( {\begin{array}{{}}1\\4\\{ - 6}\\5\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}{ - 1}\\1\\{ - 4}\\0\end{array}} \right)\)

Short Answer

Expert verified

The barycentric coordinates are \(\left( {2, - 1,0} \right)\).

Step by step solution

01

The barycentric coordinates

Consider the set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\)as an affinely independent.So, for every point \({\mathop{\rm p}\nolimits} \) in \({\mathop{\rm aff}\nolimits} S\), the coefficients \({c_1},...,{c_k}\) in the unique representation (7) of \({\mathop{\rm p}\nolimits} \) are referred to as barycentric coordinates(or sometimes, affine) of \({\mathop{\rm p}\nolimits} \).

02

Write the augmented matrix 

Move the last row of ones to the top to simplify the arithmetic.

Write the augmented matrix as shown below:

\(\left( {\begin{array}{{}}{\widetilde {{{\bf{v}}_1}}}&{\widetilde {{{\bf{v}}_2}}}&{\widetilde {{{\bf{v}}_3}}}&{\widetilde {\bf{p}}}\end{array}} \right) \sim \left( {\begin{array}{{}}0&1&1&{ - 1}\\1&1&4&1\\{ - 2}&0&{ - 6}&{ - 4}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

03

Apply row operations

Interchange row 1 and row 2.

\( \sim \left( {\begin{array}{{}}1&1&4&1\\0&1&1&{ - 1}\\{ - 2}&0&{ - 6}&{ - 4}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

At row 3, multiply row 1 by 2 and add it to row 3.

\( \sim \left( {\begin{array}{{}}1&1&4&1\\0&1&1&{ - 1}\\0&2&2&{ - 2}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

At row 4, subtract row 1 from row 4. At row 5, subtract row 1 from row 5. At row 1, subtract row 2 from row 1.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&2&2&{ - 2}\\0&1&1&{ - 1}\\0&0&{ - 3}&0\end{array}} \right)\)

At row 3, multiply row 2 by 2 and subtract it from row 3.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&0&0\\0&1&1&{ - 1}\\0&0&{ - 3}&0\end{array}} \right)\)

At row 4, subtract row 2 from row 4.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&0&0\\0&0&0&0\\0&0&{ - 3}&0\end{array}} \right)\)

Interchange row 3 and row 5.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&{ - 3}&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\)

At row 1, multiply row 3 by 3 and subtract it from row 1.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&1&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\)

04

Determine the barycentric coordinates of p

Convert the matrix into the system of equations as shown below

\(\begin{array}{}{{\mathop{\rm x}\nolimits} _1} + 3{{\mathop{\rm x}\nolimits} _3} = 2\\{{\mathop{\rm x}\nolimits} _2} + {{\mathop{\rm x}\nolimits} _3} = - 1\\{{\mathop{\rm x}\nolimits} _3} = 0\end{array}\)

Solve the system of the equation to obtain as shown below

\({{\mathop{\rm x}\nolimits} _1} = 2,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = - 1,{\rm{ }}{{\mathop{\rm x}\nolimits} _3} = 0\)

The coordinates are \(2, - 1,\,\,\,{\mathop{\rm and}\nolimits} \,\,0\), so \({\bf{p}} = 2{{\bf{v}}_1} - {{\bf{v}}_2} + 0{{\bf{v}}_3}\).

Thus, the barycentric coordinates are \(\left( {2, - 1,0} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21โ€“24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

21. Show that the area of\(\Delta {\bf{abc}}\)is\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]/2\).

[Hint:Consult Sections 3.2 and 3.3, including the Exercises.]

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free