Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Short Answer

Expert verified

a. \({{\bf{p}}_1} \in {\rm{span}}\,S\), but \({{\bf{p}}_1} \notin \,{\rm{aff}}\,\,S\)

b. \({{\bf{p}}_2} \notin {\rm{span}}\,S\), but \({{\bf{p}}_2} \notin {\rm{aff}}\,\,S\)

c. \({{\bf{p}}_3} \in {\rm{span}}\,S\), but \({{\bf{p}}_3} \in {\rm{aff}}\,\,S\)

Step by step solution

01

Find the augmented matrix

Write the augmented matrix by using the points as shown below:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{p}}_1}}&{{{\bf{p}}_2}}&{{{\bf{p}}_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&3&4&{ - 5}&4\\0&1&0&{ - 1}&3&2\\3&6&{12}&{15}&{ - 8}&8\\{ - 2}&{ - 5}&{ - 6}&{ - 7}&6&5\end{array}} \right)\end{array}\)

02

Write the row reduced form of the augmented matrix

The augmented matrix can be written as,

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}1&2&3&4&{ - 5}&4\\0&1&0&{ - 1}&3&6\\0&0&3&3&7&{ - 9}\\0&{ - 1}&0&1&{ - 4}&{ - 6}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_3} \to {R_3} - 3{R_1}\\{R_4} \to {R_4} + 2{R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&3&6&{ - 11}&{ - 11}\\0&1&0&{ - 1}&3&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} - 2{R_2}\\{R_4} \to {R_4} + {R_2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&{ - 18}&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} - {R_3}\\{R_2} \to {R_2} + 3{R_4}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&0&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_1} \to {R_1} - 18{R_4}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&0&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&1&1&{\frac{7}{3}}&{ - 3}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to \frac{1}{3}{R_3}} \right\}\end{array}\)

There are no zero rows in the augmented matrix. Hence the set is linearly independent.

03

Check for the affine combination of \({{\bf{p}}_{\bf{1}}}\)

Use the augmented matrix, \({{\bf{p}}_1}\) which can be expressed as shown below:

\({{\bf{p}}_1} = 3\left( {{{\bf{b}}_1}} \right) - 1\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(3 - 1 + 1 = 3 \ne 1\).

So, \({{\bf{p}}_1}\) is not an affine combination of point in S.

04

Check for the affine combination of \({{\bf{p}}_{\bf{2}}}\)

From the augmented matrix, it can be observed that, \({{\bf{p}}_2}\) can not be written as the linear combination of point of S.

\({{\bf{p}}_2}\)is not an affine combination of points in S.

05

Check for an affine combination of \({{\bf{p}}_{\bf{3}}}\)

Use the augmented matrix, \({{\bf{p}}_3}\) which can be expressed as shown below:

\({{\bf{p}}_3} = - 2\left( {{{\bf{b}}_1}} \right) + 6\left( {{{\bf{b}}_2}} \right) - 3\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \( - 2 + 6 - 3 = 1\).

So, \({{\bf{p}}_3}\) is an affine combination of point in S.

\({{\bf{p}}_3} = - 2\left( {{{\bf{b}}_1}} \right) + 6\left( {{{\bf{b}}_2}} \right) - 3\left( {{{\bf{b}}_3}} \right)\)

Hence, \({{\bf{p}}_3}\) is an affine combination of point in S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

Show that a set\(\left\{ {{{\bf{v}}_{\bf{1}}},...,{{\bf{v}}_p}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\)is affinely dependent when \(p \ge n + 2\).

Question: 30. Prove that the convex hull of a bounded set is bounded.

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free