Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

Short Answer

Expert verified

a. \({{\bf{p}}_1} = - 4\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 3\left( {{{\bf{b}}_3}} \right) \in {\rm{aff}}\,\,S\), the sum of coefficients of in S is 1.

b. \({{\bf{p}}_2} = 0.2\left( {{{\bf{b}}_1}} \right) + 0.5\left( {{{\bf{b}}_2}} \right) + 0.3\left( {{{\bf{b}}_3}} \right) \in {\rm{aff}}\,S\), the sum of coefficients of in S is 1.

c. \({{\bf{p}}_3} = 1\left( {{{\bf{b}}_1}} \right) + 1\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right)\), the sum of coefficients of in S is not 1.

Step by step solution

01

Find the augmented matrix

Write the augmented matrix by using the given points as shown below:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{p}}_1}}&{{{\bf{p}}_2}}&{{{\bf{p}}_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&1&2&0&{1.5}&5\\1&0&{ - 5}&{ - 19}&{ - 1.3}&{ - 4}\\1&{ - 2}&1&{ - 5}&{ - 0.5}&0\end{array}} \right)\end{array}\)

02

Write the row reduced form of the augmented matrix

Row reduce the augmented matrix as shown below:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}0&1&{12}&{38}&{4.1}&{13}\\1&0&{ - 5}&{ - 19}&{ - 1.3}&{ - 4}\\0&{ - 2}&6&{14}&{0.8}&4\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} - 2{R_2}\\{R_3} \to {R_3} - {R_2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 5}&{ - 19}&{ - 1.3}&{ - 4}\\0&1&{12}&{38}&{4.1}&{13}\\0&{ - 2}&6&{14}&{0.8}&4\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_1} \leftrightarrow {R_2}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 5}&{ - 19}&{ - 1.3}&{ - 4}\\0&1&{12}&{38}&{4.1}&{13}\\0&0&{30}&{90}&{9.0}&{30}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to {R_3} + 2{R_2}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 5}&{ - 19}&{ - 1.3}&{ - 4}\\0&1&{12}&{38}&{4.1}&{13}\\0&0&1&3&{0.3}&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to \frac{1}{{30}}{R_3}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&{ - 4}&{0.2}&1\\0&1&0&2&{0.5}&1\\0&0&1&3&{0.3}&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} + 5{R_3}\\{R_2} \to {R_2} - 12{R_3}\end{array} \right\}\end{array}\)

03

Check for the affine combination of \({{\bf{p}}_{\bf{1}}}\)

Use the augmented matrix, \({{\bf{p}}_1}\) which can be expressed as shown below:

\({{\bf{p}}_1} = - 4\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 3\left( {{{\bf{b}}_3}} \right)\)

The sum of the coefficients is \( - 4 + 2 + 3 = 1\).

So, \({{\bf{p}}_1}\) is an affine combination of point in S.

\({{\bf{p}}_1} = - 4\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 3\left( {{{\bf{b}}_3}} \right)\)

04

Check for the affine combination of \({{\bf{p}}_{\bf{2}}}\)

Use the augmented matrix, \({{\bf{p}}_2}\) which can be expressed as shown below:

\({{\bf{p}}_2} = 0.2\left( {{{\bf{b}}_1}} \right) + 0.5\left( {{{\bf{b}}_2}} \right) + 0.3\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(0.2 + 0.5 + 0.3 = 1\).

So, \({{\bf{p}}_2}\) is an affine combination of point in S.

\({{\bf{p}}_2} = 0.2\left( {{{\bf{b}}_1}} \right) + 0.5\left( {{{\bf{b}}_2}} \right) + 0.3\left( {{{\bf{b}}_3}} \right)\)

05

Check for the affine combination of \({{\bf{p}}_{\bf{3}}}\)

Use the augmented matrix, \({{\bf{p}}_3}\) which can be expressed as shown below:

\({{\bf{p}}_3} = 1\left( {{{\bf{b}}_1}} \right) + 1\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(1 + 1 + 1 = 3 \ne 1\).

So, \({{\bf{p}}_3}\) is not an affine combination of point in S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 30. Prove that the convex hull of a bounded set is bounded.

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Use partitioned matrix multiplication to compute the following matrix product, which appears in the alternative formula (5) for a Bezier curve.

\(\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free