Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 20. Let \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\) is a linear transformation, and let \(T\) be an affine subset of \({\mathbb{R}^{\bf{m}}}\), and let \(S = \left\{ {{\bf{x}} \in {\mathbb{R}^n}\,:\,f\left( {\bf{x}} \right) \in T} \right\}\). Show that \(S\) is an affine subset of \({\mathbb{R}^m}\).

Short Answer

Expert verified

It is shown that \(S\) is an affine subset of \({\mathbb{R}^m}\).

Step by step solution

01

Describe the given statement

Given that\(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation,\(T\)be an affine subset of\({\mathbb{R}^m}\), and\(S = \left\{ {x \in {\mathbb{R}^n}\,:\,f\left( {\bf{x}} \right) \in T} \right\}\).

Assume a subspace for \(S\) and \(\mathbb{R}\), that is, \({\bf{x,y}} \in S\) and \(t \in \mathbb{R}\). To show that \(S\) is affine, it suffices to show that for any pair \({\bf{x}}\) and \({\bf{y}}\) of points in \(S\), the line through \({\bf{x}}\) and \({\bf{y}}\)lies in \(S\).

02

Use Theorem 2

As \(S = \left\{ {x \in {R^n}\,:\,f\left( x \right) \in T} \right\}\). So, for each real \(t\), \(f\left( {\left( {1 - t} \right){\rm{x}} + t{\rm{y}}} \right) = \left( {1 - t} \right)f\left( {\rm{x}} \right) + tf\left( {\rm{y}} \right)\).

Since \(T\) is an affine subspace of \({\mathbb{R}^n}\), \(\left( {1 - t} \right)f\left( {\rm{x}} \right) + tf\left( {\rm{y}} \right) \in T\). Moreover, \(\left( {1 - t} \right){\rm{x}} + t{\rm{y}} \in S\), as \({\rm{x,y}} \in S\), and \(f\left( {\rm{x}} \right) \in T\).

03

Draw a conclusion

The statement \(\left( {1 - t} \right){\rm{x}} + t{\rm{y}} \in S\) is satisfied by all the points in the subspace of \(S\), and \(\mathbb{R}\).

Therefore, \(S\) is an affine subset of \({\mathbb{R}^m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?

Question: 1. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free