Chapter 8: Q8.1-19E (page 437)
Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).
Short Answer
It is shown that \(f\left( S \right)\) is an affine subset of \({\mathbb{R}^m}\).