Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

Short Answer

Expert verified

According to the definition of \(S\), \(\left( {\left( {1 - t} \right){\bf{u}} + t{\bf{v}}} \right) \in S\). So, \(S\) must be affine set.

Step by step solution

01

Assume some vectors for basis S and R

Assume \({\bf{u,v}} \in S\) and \(t \in S\), which means that \({\bf{u,v}}\) are the vector for the basis \(S\) and that \(t\) are the vector for the basis \(\mathbb{R}\).

02

Apply the dot property

Apply the dot property with the vectors formed by a vector \(v\) as shown below:

\(\begin{array}{c}\left( {\left( {1 - t} \right){\bf{u}} + t{\bf{v}}} \right).{\bf{v}} = \left( {1 - t} \right)\left( {{\bf{u}} \cdot {\bf{v}}} \right) + t\left( {{\bf{v}} \cdot {\bf{v}}} \right) = \left( {1 - t} \right)k + tk\\ = k\end{array}\)

03

Draw a conclusion

According to the definition of \(S\), \(\left( {\left( {1 - t} \right){\bf{u}} + t{\bf{v}}} \right) \in S\). So, \(S\) must be affine set.

Therefore,\(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Question: 1. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

Question: In Exercise 5, determine whether or not each set is compact and whether or not it is convex.

5. Use the sets from Exercise 3.

Let \({\bf{x}}\left( t \right)\) be a cubic Bรฉzier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free