Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Short Answer

Expert verified

It is shown that the set \(S\) of all solutions of \(A{\bf{x}} = {\bf{b}}\)is an affine subset of \({\mathbb{R}^n}\).

Step by step solution

01

Describe the given statement

It is given that \(A\) it is a \(m \times n\) matrix, \({\bf{b}} \in {\mathbb{R}^m}\) and \(S\) is the set of all solutions of \(A{\bf{x}} = {\bf{b}}\).

This implies every point in \(S\) satisfies the system \(A{\bf{x}} = {\bf{b}}\), that is, \(S = \left\{ {x:A{\bf{x}} = {\bf{b}}} \right\}\).

02

 Use Theorem 3

According to theorem 3, a nonempty set \(S\) is affine if and only if it is a flat. So, we will have to show that \(S\) is a flat.

Assume that \(W\)is the set of all homogeneous solutions of the system\(A{\rm{x}} = 0\). So, \(W\)must be a subspace of \({\mathbb{R}^n}\).

03

 Use Theorem 6 of solution set of linear systems

If \(p\) be a solution of the system \(A{\bf{x}} = {\bf{b}}\), then the solution set of \(A{\bf{x}} = {\bf{b}}\) is the set of all vectors of the form \(W = p + {v_h}\), where \({v_h}\) is any solution of the homogeneous equation \(A{\bf{x}} = 0\).

Now, as \(S = W + p\), where \(p\) is a solution of the system \(A{\bf{x}} = {\bf{b}}\), so, \(S\) must be a translated set of \(W\). Thus, \(S\) is a flat.

Therefore, the set \(S\) of all solutions of \(A{\bf{x}} = {\bf{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 24. Repeat Exercise 23 for \({v_1} = \left( \begin{array}{l}1\\2\end{array} \right)\), \({v_2} = \left( \begin{array}{l}5\\1\end{array} \right)\), \({v_3} = \left( \begin{array}{l}4\\4\end{array} \right)\) and \(p = \left( \begin{array}{l}2\\3\end{array} \right)\).

Question: In Exercise 5, determine whether or not each set is compact and whether or not it is convex.

5. Use the sets from Exercise 3.

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{ - {\bf{4}}}&{\bf{2}}\\{\bf{7}}&{ - {\bf{6}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\) related to Nul \({B^T}\)? See section 6.1)

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the “left” side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free