Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 13. Suppose \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\). Show that Span \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\) is a plane in \({\mathbb{R}^3}\). (Hint: What can you say about \({\rm{u}}\) and \({\rm{v}}\)when Span \(\left\{ {{\rm{u,v}}} \right\}\) is a plane?)

Short Answer

Expert verified

It is shown that the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Step by step solution

01

Describe the given statement

It is given that \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\)and it is to be shown that Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\). This is possible only if the set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is linearly independent.

02

 Make a linear combination of the given set of vectors

A possible linear combination of a set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is \({c_1}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_2}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\), where \({c_2},{c_3}\) satisfies \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\). If \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\) is linearly independent, then \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\) must be equal to 0, which is possible only if \({c_1} = {c_2} = 0\).

03

 Use property of a linear independent set

According to the property of linear independent set, if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a set of linearly independent vectors, then all the coefficients of its linear combination are 0. So, \({c_1} = {c_2} = 0\) is true for all \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) in \({\mathbb{R}^3}\).

04

 Draw a conclusion

As the set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is linearly independent, so the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Hence, it is proved that the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Question:28. Give an example of a compact set\(A\)and a closed set\(B\)in\({\mathbb{R}^2}\)such that\(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \)but\(A\)and\(B\)cannot be strictly separated by a hyperplane.

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

Suppose that\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is an affinely independent set in\({\mathbb{R}^{\bf{n}}}\)and q is an arbitrary point in\({\mathbb{R}^{\bf{n}}}\). Show that the translated set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)is also affinely independent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free